X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fformal_topology%2Fcategories.ma;h=015e245f3f5b142084a4b8a1922e0c07f6b30ade;hb=e880d6eab5e1700f4a625ddcd7d0fa8f0cce2dcc;hp=7adcb279f72287c1a0e5a5e09e30dc2b18a549b2;hpb=be9826d87207e8dcf6eb152bd54417b5a9e80ab9;p=helm.git diff --git a/helm/software/matita/library/formal_topology/categories.ma b/helm/software/matita/library/formal_topology/categories.ma index 7adcb279f..015e245f3 100644 --- a/helm/software/matita/library/formal_topology/categories.ma +++ b/helm/software/matita/library/formal_topology/categories.ma @@ -12,36 +12,511 @@ (* *) (**************************************************************************) -include "logic/cprop_connectives.ma". +include "formal_topology/cprop_connectives.ma". -record equivalence_relation (A:Type) : Type ≝ - { eq_rel:2> A → A → CProp; +notation "hvbox(a break = \sub \ID b)" non associative with precedence 45 +for @{ 'eqID $a $b }. + +notation > "hvbox(a break =_\ID b)" non associative with precedence 45 +for @{ cic:/matita/logic/equality/eq.ind#xpointer(1/1) ? $a $b }. + +interpretation "ID eq" 'eqID x y = (cic:/matita/logic/equality/eq.ind#xpointer(1/1) ? x y). + +record equivalence_relation (A:Type0) : Type1 ≝ + { eq_rel:2> A → A → CProp0; refl: reflexive ? eq_rel; sym: symmetric ? eq_rel; trans: transitive ? eq_rel }. -record setoid : Type ≝ - { carr:> Type; +record setoid : Type1 ≝ + { carr:> Type0; eq: equivalence_relation carr }. -interpretation "setoid eq" 'eq x y = (eq_rel _ (eq _) x y). +record equivalence_relation1 (A:Type1) : Type2 ≝ + { eq_rel1:2> A → A → CProp1; + refl1: reflexive1 ? eq_rel1; + sym1: symmetric1 ? eq_rel1; + trans1: transitive1 ? eq_rel1 + }. + +record setoid1: Type2 ≝ + { carr1:> Type1; + eq1: equivalence_relation1 carr1 + }. + +definition setoid1_of_setoid: setoid → setoid1. + intro; + constructor 1; + [ apply (carr s) + | constructor 1; + [ apply (eq_rel s); + apply (eq s) + | apply (refl s) + | apply (sym s) + | apply (trans s)]] +qed. + +coercion setoid1_of_setoid. +prefer coercion Type_OF_setoid. + +record equivalence_relation2 (A:Type2) : Type3 ≝ + { eq_rel2:2> A → A → CProp2; + refl2: reflexive2 ? eq_rel2; + sym2: symmetric2 ? eq_rel2; + trans2: transitive2 ? eq_rel2 + }. + +record setoid2: Type3 ≝ + { carr2:> Type2; + eq2: equivalence_relation2 carr2 + }. + +definition setoid2_of_setoid1: setoid1 → setoid2. + intro; + constructor 1; + [ apply (carr1 s) + | constructor 1; + [ apply (eq_rel1 s); + apply (eq1 s) + | apply (refl1 s) + | apply (sym1 s) + | apply (trans1 s)]] +qed. + +coercion setoid2_of_setoid1. +prefer coercion Type_OF_setoid2. +prefer coercion Type_OF_setoid. +prefer coercion Type_OF_setoid1. +(* we prefer 0 < 1 < 2 *) + +record equivalence_relation3 (A:Type3) : Type4 ≝ + { eq_rel3:2> A → A → CProp3; + refl3: reflexive3 ? eq_rel3; + sym3: symmetric3 ? eq_rel3; + trans3: transitive3 ? eq_rel3 + }. + +record setoid3: Type4 ≝ + { carr3:> Type3; + eq3: equivalence_relation3 carr3 + }. + +interpretation "setoid3 eq" 'eq t x y = (eq_rel3 ? (eq3 t) x y). +interpretation "setoid2 eq" 'eq t x y = (eq_rel2 ? (eq2 t) x y). +interpretation "setoid1 eq" 'eq t x y = (eq_rel1 ? (eq1 t) x y). +interpretation "setoid eq" 'eq t x y = (eq_rel ? (eq t) x y). + +notation > "hvbox(a break =_12 b)" non associative with precedence 45 +for @{ eq_rel2 (carr2 (setoid2_of_setoid1 ?)) (eq2 (setoid2_of_setoid1 ?)) $a $b }. +notation > "hvbox(a break =_0 b)" non associative with precedence 45 +for @{ eq_rel ? (eq ?) $a $b }. +notation > "hvbox(a break =_1 b)" non associative with precedence 45 +for @{ eq_rel1 ? (eq1 ?) $a $b }. +notation > "hvbox(a break =_2 b)" non associative with precedence 45 +for @{ eq_rel2 ? (eq2 ?) $a $b }. +notation > "hvbox(a break =_3 b)" non associative with precedence 45 +for @{ eq_rel3 ? (eq3 ?) $a $b }. + +interpretation "setoid3 symmetry" 'invert r = (sym3 ???? r). +interpretation "setoid2 symmetry" 'invert r = (sym2 ???? r). +interpretation "setoid1 symmetry" 'invert r = (sym1 ???? r). +interpretation "setoid symmetry" 'invert r = (sym ???? r). +notation ".= r" with precedence 50 for @{'trans $r}. +interpretation "trans3" 'trans r = (trans3 ????? r). +interpretation "trans2" 'trans r = (trans2 ????? r). +interpretation "trans1" 'trans r = (trans1 ????? r). +interpretation "trans" 'trans r = (trans ????? r). -record binary_morphism (A,B,C: setoid) : Type ≝ - { fun:2> A → B → C; - prop: ∀a,a',b,b'. eq ? a a' → eq ? b b' → eq ? (fun a b) (fun a' b') +record unary_morphism (A,B: setoid) : Type0 ≝ + { fun1:1> A → B; + prop1: ∀a,a'. eq ? a a' → eq ? (fun1 a) (fun1 a') }. -record category : Type ≝ - { objs: Type; +record unary_morphism1 (A,B: setoid1) : Type1 ≝ + { fun11:1> A → B; + prop11: ∀a,a'. eq1 ? a a' → eq1 ? (fun11 a) (fun11 a') + }. + +record unary_morphism2 (A,B: setoid2) : Type2 ≝ + { fun12:1> A → B; + prop12: ∀a,a'. eq2 ? a a' → eq2 ? (fun12 a) (fun12 a') + }. + +record unary_morphism3 (A,B: setoid3) : Type3 ≝ + { fun13:1> A → B; + prop13: ∀a,a'. eq3 ? a a' → eq3 ? (fun13 a) (fun13 a') + }. + +record binary_morphism (A,B,C:setoid) : Type0 ≝ + { fun2:2> A → B → C; + prop2: ∀a,a',b,b'. eq ? a a' → eq ? b b' → eq ? (fun2 a b) (fun2 a' b') + }. + +record binary_morphism1 (A,B,C:setoid1) : Type1 ≝ + { fun21:2> A → B → C; + prop21: ∀a,a',b,b'. eq1 ? a a' → eq1 ? b b' → eq1 ? (fun21 a b) (fun21 a' b') + }. + +record binary_morphism2 (A,B,C:setoid2) : Type2 ≝ + { fun22:2> A → B → C; + prop22: ∀a,a',b,b'. eq2 ? a a' → eq2 ? b b' → eq2 ? (fun22 a b) (fun22 a' b') + }. + +record binary_morphism3 (A,B,C:setoid3) : Type3 ≝ + { fun23:2> A → B → C; + prop23: ∀a,a',b,b'. eq3 ? a a' → eq3 ? b b' → eq3 ? (fun23 a b) (fun23 a' b') + }. + +notation "† c" with precedence 90 for @{'prop1 $c }. +notation "l ‡ r" with precedence 90 for @{'prop2 $l $r }. +notation "#" with precedence 90 for @{'refl}. +interpretation "prop1" 'prop1 c = (prop1 ????? c). +interpretation "prop11" 'prop1 c = (prop11 ????? c). +interpretation "prop12" 'prop1 c = (prop12 ????? c). +interpretation "prop13" 'prop1 c = (prop13 ????? c). +interpretation "prop2" 'prop2 l r = (prop2 ???????? l r). +interpretation "prop21" 'prop2 l r = (prop21 ???????? l r). +interpretation "prop22" 'prop2 l r = (prop22 ???????? l r). +interpretation "prop23" 'prop2 l r = (prop23 ???????? l r). +interpretation "refl" 'refl = (refl ???). +interpretation "refl1" 'refl = (refl1 ???). +interpretation "refl2" 'refl = (refl2 ???). +interpretation "refl3" 'refl = (refl3 ???). + +notation > "A × term 74 B ⇒ term 19 C" non associative with precedence 72 for @{'binary_morphism0 $A $B $C}. +notation > "A × term 74 B ⇒_1 term 19 C" non associative with precedence 72 for @{'binary_morphism1 $A $B $C}. +notation > "A × term 74 B ⇒_2 term 19 C" non associative with precedence 72 for @{'binary_morphism2 $A $B $C}. +notation > "A × term 74 B ⇒_3 term 19 C" non associative with precedence 72 for @{'binary_morphism3 $A $B $C}. +notation > "B ⇒_1 C" right associative with precedence 72 for @{'arrows1_SET $B $C}. +notation > "B ⇒_1. C" right associative with precedence 72 for @{'arrows1_SETlow $B $C}. +notation > "B ⇒_2 C" right associative with precedence 72 for @{'arrows2_SET1 $B $C}. +notation > "B ⇒_2. C" right associative with precedence 72 for @{'arrows2_SET1low $B $C}. + +notation "A × term 74 B ⇒ term 19 C" non associative with precedence 72 for @{'binary_morphism0 $A $B $C}. +notation "A × term 74 B ⇒\sub 1 term 19 C" non associative with precedence 72 for @{'binary_morphism1 $A $B $C}. +notation "A × term 74 B ⇒\sub 2 term 19 C" non associative with precedence 72 for @{'binary_morphism2 $A $B $C}. +notation "A × term 74 B ⇒\sub 3 term 19 C" non associative with precedence 72 for @{'binary_morphism3 $A $B $C}. +notation "B ⇒\sub 1 C" right associative with precedence 72 for @{'arrows1_SET $B $C}. +notation "B ⇒\sub 2 C" right associative with precedence 72 for @{'arrows2_SET1 $B $C}. +notation "B ⇒\sub 1. C" right associative with precedence 72 for @{'arrows1_SETlow $B $C}. +notation "B ⇒\sub 2. C" right associative with precedence 72 for @{'arrows2_SET1low $B $C}. + +interpretation "'binary_morphism0" 'binary_morphism0 A B C = (binary_morphism A B C). +interpretation "'arrows2_SET1 low" 'arrows2_SET1 A B = (unary_morphism2 A B). +interpretation "'arrows2_SET1low" 'arrows2_SET1low A B = (unary_morphism2 A B). +interpretation "'binary_morphism1" 'binary_morphism1 A B C = (binary_morphism1 A B C). +interpretation "'binary_morphism2" 'binary_morphism2 A B C = (binary_morphism2 A B C). +interpretation "'binary_morphism3" 'binary_morphism3 A B C = (binary_morphism3 A B C). +interpretation "'arrows1_SET low" 'arrows1_SET A B = (unary_morphism1 A B). +interpretation "'arrows1_SETlow" 'arrows1_SETlow A B = (unary_morphism1 A B). + + +definition unary_morphism2_of_unary_morphism1: + ∀S,T:setoid1.unary_morphism1 S T → unary_morphism2 (setoid2_of_setoid1 S) T. + intros; + constructor 1; + [ apply (fun11 ?? u); + | apply (prop11 ?? u); ] +qed. + +definition CPROP: setoid1. + constructor 1; + [ apply CProp0 + | constructor 1; + [ apply Iff + | intros 1; split; intro; assumption + | intros 3; cases i; split; assumption + | intros 5; cases i; cases i1; split; intro; + [ apply (f2 (f x1)) | apply (f1 (f3 z1))]]] +qed. + +definition CProp0_of_CPROP: carr1 CPROP → CProp0 ≝ λx.x. +coercion CProp0_of_CPROP. + +alias symbol "eq" = "setoid1 eq". +definition fi': ∀A,B:CPROP. A = B → B → A. + intros; apply (fi ?? e); assumption. +qed. + +notation ". r" with precedence 50 for @{'fi $r}. +interpretation "fi" 'fi r = (fi' ?? r). + +definition and_morphism: binary_morphism1 CPROP CPROP CPROP. + constructor 1; + [ apply And + | intros; split; intro; cases a1; split; + [ apply (if ?? e a2) + | apply (if ?? e1 b1) + | apply (fi ?? e a2) + | apply (fi ?? e1 b1)]] +qed. + +interpretation "and_morphism" 'and a b = (fun21 ??? and_morphism a b). + +definition or_morphism: binary_morphism1 CPROP CPROP CPROP. + constructor 1; + [ apply Or + | intros; split; intro; cases o; [1,3:left |2,4: right] + [ apply (if ?? e a1) + | apply (fi ?? e a1) + | apply (if ?? e1 b1) + | apply (fi ?? e1 b1)]] +qed. + +interpretation "or_morphism" 'or a b = (fun21 ??? or_morphism a b). + +definition if_morphism: binary_morphism1 CPROP CPROP CPROP. + constructor 1; + [ apply (λA,B. A → B) + | intros; split; intros; + [ apply (if ?? e1); apply f; apply (fi ?? e); assumption + | apply (fi ?? e1); apply f; apply (if ?? e); assumption]] +qed. + +notation > "hvbox(a break ∘ b)" left associative with precedence 55 for @{ comp ??? $a $b }. +record category : Type1 ≝ { + objs:> Type0; arrows: objs → objs → setoid; id: ∀o:objs. arrows o o; - comp: ∀o1,o2,o3. binary_morphism (arrows o1 o2) (arrows o2 o3) (arrows o1 o3); - comp_assoc: ∀o1,o2,o3,o4. ∀a12,a23,a34. - comp o1 o3 o4 (comp o1 o2 o3 a12 a23) a34 = comp o1 o2 o4 a12 (comp o2 o3 o4 a23 a34); - id_neutral_left: ∀o1,o2. ∀a: arrows o1 o2. comp ??? (id o1) a = a; - id_neutral_right: ∀o1,o2. ∀a: arrows o1 o2. comp ??? a (id o2) = a + comp: ∀o1,o2,o3. (arrows o1 o2) × (arrows o2 o3) ⇒ (arrows o1 o3); + comp_assoc: ∀o1,o2,o3,o4.∀a12:arrows o1 ?.∀a23:arrows o2 ?.∀a34:arrows o3 o4. + (a12 ∘ a23) ∘ a34 =_0 a12 ∘ (a23 ∘ a34); + id_neutral_left : ∀o1,o2. ∀a: arrows o1 o2. (id o1) ∘ a =_0 a; + id_neutral_right: ∀o1,o2. ∀a: arrows o1 o2. a ∘ (id o2) =_0 a +}. +notation "hvbox(a break ∘ b)" left associative with precedence 55 for @{ 'compose $a $b }. + +record category1 : Type2 ≝ + { objs1:> Type1; + arrows1: objs1 → objs1 → setoid1; + id1: ∀o:objs1. arrows1 o o; + comp1: ∀o1,o2,o3. binary_morphism1 (arrows1 o1 o2) (arrows1 o2 o3) (arrows1 o1 o3); + comp_assoc1: ∀o1,o2,o3,o4. ∀a12,a23,a34. + comp1 o1 o3 o4 (comp1 o1 o2 o3 a12 a23) a34 =_1 comp1 o1 o2 o4 a12 (comp1 o2 o3 o4 a23 a34); + id_neutral_right1: ∀o1,o2. ∀a: arrows1 o1 o2. comp1 ??? (id1 o1) a =_1 a; + id_neutral_left1: ∀o1,o2. ∀a: arrows1 o1 o2. comp1 ??? a (id1 o2) =_1 a }. -interpretation "category composition" 'compose x y = (comp ____ x y). \ No newline at end of file +record category2 : Type3 ≝ + { objs2:> Type2; + arrows2: objs2 → objs2 → setoid2; + id2: ∀o:objs2. arrows2 o o; + comp2: ∀o1,o2,o3. binary_morphism2 (arrows2 o1 o2) (arrows2 o2 o3) (arrows2 o1 o3); + comp_assoc2: ∀o1,o2,o3,o4. ∀a12,a23,a34. + comp2 o1 o3 o4 (comp2 o1 o2 o3 a12 a23) a34 =_2 comp2 o1 o2 o4 a12 (comp2 o2 o3 o4 a23 a34); + id_neutral_right2: ∀o1,o2. ∀a: arrows2 o1 o2. comp2 ??? (id2 o1) a =_2 a; + id_neutral_left2: ∀o1,o2. ∀a: arrows2 o1 o2. comp2 ??? a (id2 o2) =_2 a + }. + +record category3 : Type4 ≝ + { objs3:> Type3; + arrows3: objs3 → objs3 → setoid3; + id3: ∀o:objs3. arrows3 o o; + comp3: ∀o1,o2,o3. binary_morphism3 (arrows3 o1 o2) (arrows3 o2 o3) (arrows3 o1 o3); + comp_assoc3: ∀o1,o2,o3,o4. ∀a12,a23,a34. + comp3 o1 o3 o4 (comp3 o1 o2 o3 a12 a23) a34 =_3 comp3 o1 o2 o4 a12 (comp3 o2 o3 o4 a23 a34); + id_neutral_right3: ∀o1,o2. ∀a: arrows3 o1 o2. comp3 ??? (id3 o1) a =_3 a; + id_neutral_left3: ∀o1,o2. ∀a: arrows3 o1 o2. comp3 ??? a (id3 o2) =_3 a + }. + +notation "'ASSOC'" with precedence 90 for @{'assoc}. + +interpretation "category2 composition" 'compose x y = (fun22 ??? (comp2 ????) y x). +interpretation "category2 assoc" 'assoc = (comp_assoc2 ????????). +interpretation "category1 composition" 'compose x y = (fun21 ??? (comp1 ????) y x). +interpretation "category1 assoc" 'assoc = (comp_assoc1 ????????). +interpretation "category composition" 'compose x y = (fun2 ??? (comp ????) y x). +interpretation "category assoc" 'assoc = (comp_assoc ????????). + +definition category2_of_category1: category1 → category2. + intro; + constructor 1; + [ apply (objs1 c); + | intros; apply (setoid2_of_setoid1 (arrows1 c o o1)); + | apply (id1 c); + | intros; + constructor 1; + [ intros; apply (comp1 c o1 o2 o3 c1 c2); + | intros; unfold setoid2_of_setoid1 in e e1 a a' b b'; simplify in e e1 a a' b b'; + change with ((b∘a) =_1 (b'∘a')); apply (e‡e1); ] + | intros; simplify; whd in a12 a23 a34; whd; apply rule (ASSOC); + | intros; simplify; whd in a; whd; apply id_neutral_right1; + | intros; simplify; whd in a; whd; apply id_neutral_left1; ] +qed. +(*coercion category2_of_category1.*) + +record functor2 (C1: category2) (C2: category2) : Type3 ≝ + { map_objs2:1> C1 → C2; + map_arrows2: ∀S,T. unary_morphism2 (arrows2 ? S T) (arrows2 ? (map_objs2 S) (map_objs2 T)); + respects_id2: ∀o:C1. map_arrows2 ?? (id2 ? o) = id2 ? (map_objs2 o); + respects_comp2: + ∀o1,o2,o3.∀f1:arrows2 ? o1 o2.∀f2:arrows2 ? o2 o3. + map_arrows2 ?? (f2 ∘ f1) = map_arrows2 ?? f2 ∘ map_arrows2 ?? f1}. + +notation > "F⎽⇒ x" left associative with precedence 60 for @{'map_arrows2 $F $x}. +notation "F\sub⇒ x" left associative with precedence 60 for @{'map_arrows2 $F $x}. +interpretation "map_arrows2" 'map_arrows2 F x = (fun12 ?? (map_arrows2 ?? F ??) x). + +definition functor2_setoid: category2 → category2 → setoid3. + intros (C1 C2); + constructor 1; + [ apply (functor2 C1 C2); + | constructor 1; + [ intros (f g); + apply (∀c:C1. cic:/matita/logic/equality/eq.ind#xpointer(1/1) ? (f c) (g c)); + | simplify; intros; apply cic:/matita/logic/equality/eq.ind#xpointer(1/1/1); + | simplify; intros; apply cic:/matita/logic/equality/sym_eq.con; apply H; + | simplify; intros; apply cic:/matita/logic/equality/trans_eq.con; + [2: apply H; | skip | apply H1;]]] +qed. + +definition functor2_of_functor2_setoid: ∀S,T. functor2_setoid S T → functor2 S T ≝ λS,T,x.x. +coercion functor2_of_functor2_setoid. + +definition CAT2: category3. + constructor 1; + [ apply category2; + | apply functor2_setoid; + | intros; constructor 1; + [ apply (λx.x); + | intros; constructor 1; + [ apply (λx.x); + | intros; assumption;] + | intros; apply rule #; + | intros; apply rule #; ] + | intros; constructor 1; + [ intros; constructor 1; + [ intros; apply (c1 (c o)); + | intros; constructor 1; + [ intro; apply (map_arrows2 ?? c1 ?? (map_arrows2 ?? c ?? c2)); + | intros; apply (††e); ] + | intros; simplify; + apply (.= †(respects_id2 : ?)); + apply (respects_id2 : ?); + | intros; simplify; + apply (.= †(respects_comp2 : ?)); + apply (respects_comp2 : ?); ] + | intros; intro; simplify; + apply (cic:/matita/logic/equality/eq_ind.con ????? (e ?)); + apply (cic:/matita/logic/equality/eq_ind.con ????? (e1 ?)); + constructor 1; ] + | intros; intro; simplify; constructor 1; + | intros; intro; simplify; constructor 1; + | intros; intro; simplify; constructor 1; ] +qed. + +definition category2_of_objs3_CAT2: objs3 CAT2 → category2 ≝ λx.x. +coercion category2_of_objs3_CAT2. + +definition functor2_setoid_of_arrows3_CAT2: ∀S,T. arrows3 CAT2 S T → functor2_setoid S T ≝ λS,T,x.x. +coercion functor2_setoid_of_arrows3_CAT2. + +notation > "B ⇒_\c3 C" right associative with precedence 72 for @{'arrows3_CAT $B $C}. +notation "B ⇒\sub (\c 3) C" right associative with precedence 72 for @{'arrows3_CAT $B $C}. +interpretation "'arrows3_CAT" 'arrows3_CAT A B = (arrows3 CAT2 A B). + +definition unary_morphism_setoid: setoid → setoid → setoid. + intros; + constructor 1; + [ apply (unary_morphism s s1); + | constructor 1; + [ intros (f g); apply (∀a:s. eq ? (f a) (g a)); + | intros 1; simplify; intros; apply refl; + | simplify; intros; apply sym; apply f; + | simplify; intros; apply trans; [2: apply f; | skip | apply f1]]] +qed. + +definition SET: category1. + constructor 1; + [ apply setoid; + | apply rule (λS,T:setoid.setoid1_of_setoid (unary_morphism_setoid S T)); + | intros; constructor 1; [ apply (λx:carr o.x); | intros; assumption ] + | intros; constructor 1; [ intros; constructor 1; [ apply (λx. c1 (c x)); | intros; + apply († (†e));] + | intros; whd; intros; simplify; whd in H1; whd in H; + apply trans; [ apply (b (a' a1)); | lapply (prop1 ?? b (a a1) (a' a1)); + [ apply Hletin | apply (e a1); ] | apply e1; ]] + | intros; whd; intros; simplify; apply refl; + | intros; simplify; whd; intros; simplify; apply refl; + | intros; simplify; whd; intros; simplify; apply refl; + ] +qed. + +definition setoid_of_SET: objs1 SET → setoid ≝ λx.x. +coercion setoid_of_SET. + +definition unary_morphism_setoid_of_arrows1_SET: + ∀P,Q.arrows1 SET P Q → unary_morphism_setoid P Q ≝ λP,Q,x.x. +coercion unary_morphism_setoid_of_arrows1_SET. + +interpretation "'arrows1_SET" 'arrows1_SET A B = (arrows1 SET A B). + +definition unary_morphism1_setoid1: setoid1 → setoid1 → setoid1. + intros; + constructor 1; + [ apply (unary_morphism1 s s1); + | constructor 1; + [ intros (f g); + alias symbol "eq" = "setoid1 eq". + apply (∀a: carr1 s. f a = g a); + | intros 1; simplify; intros; apply refl1; + | simplify; intros; apply sym1; apply f; + | simplify; intros; apply trans1; [2: apply f; | skip | apply f1]]] +qed. + +definition unary_morphism1_of_unary_morphism1_setoid1 : + ∀S,T. unary_morphism1_setoid1 S T → unary_morphism1 S T ≝ λP,Q,x.x. +coercion unary_morphism1_of_unary_morphism1_setoid1. + +definition SET1: objs3 CAT2. + constructor 1; + [ apply setoid1; + | apply rule (λS,T.setoid2_of_setoid1 (unary_morphism1_setoid1 S T)); + | intros; constructor 1; [ apply (λx.x); | intros; assumption ] + | intros; constructor 1; [ intros; constructor 1; [ apply (λx. c1 (c x)); | intros; + apply († (†e));] + | intros; whd; intros; simplify; whd in H1; whd in H; + apply trans1; [ apply (b (a' a1)); | lapply (prop11 ?? b (a a1) (a' a1)); + [ apply Hletin | apply (e a1); ] | apply e1; ]] + | intros; whd; intros; simplify; apply refl1; + | intros; simplify; whd; intros; simplify; apply refl1; + | intros; simplify; whd; intros; simplify; apply refl1; + ] +qed. + +interpretation "'arrows2_SET1" 'arrows2_SET1 A B = (arrows2 SET1 A B). + +definition setoid1_of_SET1: objs2 SET1 → setoid1 ≝ λx.x. +coercion setoid1_of_SET1. + +definition unary_morphism1_setoid1_of_arrows2_SET1: + ∀P,Q.arrows2 SET1 P Q → unary_morphism1_setoid1 P Q ≝ λP,Q,x.x. +coercion unary_morphism1_setoid1_of_arrows2_SET1. + +variant objs2_of_category1: objs1 SET → objs2 SET1 ≝ setoid1_of_setoid. +coercion objs2_of_category1. + +prefer coercion Type_OF_setoid. (* we prefer the lower carrier projection *) +prefer coercion Type_OF_objs1. + +alias symbol "exists" (instance 1) = "CProp2 exists". +definition full2 ≝ + λA,B:CAT2.λF:carr3 (arrows3 CAT2 A B). + ∀o1,o2:A.∀f.∃g:arrows2 A o1 o2.F⎽⇒ g =_2 f. +alias symbol "exists" (instance 1) = "CProp exists". + +definition faithful2 ≝ + λA,B:CAT2.λF:carr3 (arrows3 CAT2 A B). + ∀o1,o2:A.∀f,g:arrows2 A o1 o2.F⎽⇒ f =_2 F⎽⇒ g → f =_2 g. + + +notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}. +notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}. + +notation "r \sup (⎻* )" non associative with precedence 90 for @{'OR_f_minus_star $r}. +notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r}. + +notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. +notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}.