X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fformal_topology%2Frelations.ma;h=789f312cf0260da24d333203d898af38a3abca3f;hb=e880d6eab5e1700f4a625ddcd7d0fa8f0cce2dcc;hp=033788e928fb193b877330b806c89a8cf92281cc;hpb=42e87a2db149c53be4001e0f3c46ad2fa0a9579e;p=helm.git diff --git a/helm/software/matita/library/formal_topology/relations.ma b/helm/software/matita/library/formal_topology/relations.ma index 033788e92..789f312cf 100644 --- a/helm/software/matita/library/formal_topology/relations.ma +++ b/helm/software/matita/library/formal_topology/relations.ma @@ -12,114 +12,315 @@ (* *) (**************************************************************************) -include "datatypes/subsets.ma". +include "formal_topology/subsets.ma". -record binary_relation (A,B: Type) : Type ≝ - { satisfy:2> A → B → CProp }. +record binary_relation (A,B: SET) : Type1 ≝ + { satisfy:> binary_morphism1 A B CPROP }. notation < "hvbox (x \nbsp \natur term 90 r \nbsp y)" with precedence 45 for @{'satisfy $r $x $y}. notation > "hvbox (x \natur term 90 r y)" with precedence 45 for @{'satisfy $r $x $y}. -interpretation "relation applied" 'satisfy r x y = (satisfy __ r x y). +interpretation "relation applied" 'satisfy r x y = (fun21 ??? (satisfy ?? r) x y). + +definition binary_relation_setoid: SET → SET → setoid1. + intros (A B); + constructor 1; + [ apply (binary_relation A B) + | constructor 1; + [ apply (λA,B.λr,r': binary_relation A B. ∀x,y. r x y ↔ r' x y) + | simplify; intros 3; split; intro; assumption + | simplify; intros 5; split; intro; + [ apply (fi ?? (f ??)) | apply (if ?? (f ??))] assumption + | simplify; intros 7; split; intro; + [ apply (if ?? (f1 ??)) | apply (fi ?? (f ??)) ] + [ apply (if ?? (f ??)) | apply (fi ?? (f1 ??)) ] + assumption]] +qed. + +definition binary_relation_of_binary_relation_setoid : + ∀A,B.binary_relation_setoid A B → binary_relation A B ≝ λA,B,c.c. +coercion binary_relation_of_binary_relation_setoid. definition composition: ∀A,B,C. - binary_relation A B → binary_relation B C → - binary_relation A C. - intros (A B C R12 R23); + (binary_relation_setoid A B) × (binary_relation_setoid B C) ⇒_1 (binary_relation_setoid A C). + intros; + constructor 1; + [ intros (R12 R23); + constructor 1; + constructor 1; + [ apply (λs1:A.λs3:C.∃s2:B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); + | intros; + split; intro; cases e2 (w H3); clear e2; exists; [1,3: apply w ] + [ apply (. (e^-1‡#)‡(#‡e1^-1)); assumption + | apply (. (e‡#)‡(#‡e1)); assumption]] + | intros 8; split; intro H2; simplify in H2 ⊢ %; + cases H2 (w H3); clear H2; exists [1,3: apply w] cases H3 (H2 H4); clear H3; + [ lapply (if ?? (e x w) H2) | lapply (fi ?? (e x w) H2) ] + [ lapply (if ?? (e1 w y) H4)| lapply (fi ?? (e1 w y) H4) ] + exists; try assumption; + split; assumption] +qed. + +definition REL: category1. constructor 1; - intros (s1 s3); - apply (∃s2. s1 ♮R12 s2 ∧ s2 ♮R23 s3); + [ apply setoid + | intros (T T1); apply (binary_relation_setoid T T1) + | intros; constructor 1; + constructor 1; unfold setoid1_of_setoid; simplify; + [ (* changes required to avoid universe inconsistency *) + change with (carr o → carr o → CProp); intros; apply (eq ? c c1) + | intros; split; intro; change in a a' b b' with (carr o); + change in e with (eq ? a a'); change in e1 with (eq ? b b'); + [ apply (.= (e ^ -1)); + apply (.= e2); + apply e1 + | apply (.= e); + apply (.= e2); + apply (e1 ^ -1)]] + | apply composition + | intros 9; + split; intro; + cases f (w H); clear f; cases H; clear H; + [cases f (w1 H); clear f | cases f1 (w1 H); clear f1] + cases H; clear H; + exists; try assumption; + split; try assumption; + exists; try assumption; + split; assumption + |6,7: intros 5; unfold composition; simplify; split; intro; + unfold setoid1_of_setoid in x y; simplify in x y; + [1,3: cases e (w H1); clear e; cases H1; clear H1; unfold; + [ apply (. (e : eq1 ? x w)‡#); assumption + | apply (. #‡(e : eq1 ? w y)^-1); assumption] + |2,4: exists; try assumption; split; + (* change required to avoid universe inconsistency *) + change in x with (carr o1); change in y with (carr o2); + first [apply refl | assumption]]] qed. -interpretation "binary relation composition" 'compose x y = (composition ___ x y). +definition setoid_of_REL : objs1 REL → setoid ≝ λx.x. +coercion setoid_of_REL. + +definition binary_relation_setoid_of_arrow1_REL : + ∀P,Q. arrows1 REL P Q → binary_relation_setoid P Q ≝ λP,Q,x.x. +coercion binary_relation_setoid_of_arrow1_REL. -definition equal_relations ≝ - λA,B.λr,r': binary_relation A B. - ∀x,y. r x y ↔ r' x y. -interpretation "equal relation" 'eq x y = (equal_relations __ x y). +notation > "B ⇒_\r1 C" right associative with precedence 72 for @{'arrows1_REL $B $C}. +notation "B ⇒\sub (\r 1) C" right associative with precedence 72 for @{'arrows1_REL $B $C}. +interpretation "'arrows1_REL" 'arrows1_REL A B = (arrows1 REL A B). +notation > "B ⇒_\r2 C" right associative with precedence 72 for @{'arrows2_REL $B $C}. +notation "B ⇒\sub (\r 2) C" right associative with precedence 72 for @{'arrows2_REL $B $C}. +interpretation "'arrows2_REL" 'arrows2_REL A B = (arrows2 (category2_of_category1 REL) A B). -lemma refl_equal_relations: ∀A,B. reflexive ? (equal_relations A B). - intros 3; intros 2; split; intro; assumption. + +definition full_subset: ∀s:REL. Ω^s. + apply (λs.{x | True}); + intros; simplify; split; intro; assumption. qed. -lemma sym_equal_relations: ∀A,B. symmetric ? (equal_relations A B). - intros 5; intros 2; split; intro; - [ apply (fi ?? (H ??)) | apply (if ?? (H ??))] assumption. +coercion full_subset. + +definition comprehension: ∀b:REL. (b ⇒_1. CPROP) → Ω^b. + apply (λb:REL. λP: b ⇒_1 CPROP. {x | P x}); + intros; simplify; + apply (.= †e); apply refl1. qed. -lemma trans_equal_relations: ∀A,B. transitive ? (equal_relations A B). - intros 7; intros 2; split; intro; - [ apply (if ?? (H1 ??)) | apply (fi ?? (H ??)) ] - [ apply (if ?? (H ??)) | apply (fi ?? (H1 ??)) ] - assumption. +interpretation "subset comprehension" 'comprehension s p = + (comprehension s (mk_unary_morphism1 ?? p ?)). + +definition ext: ∀X,S:REL. (X ⇒_\r1 S) × S ⇒_1 (Ω^X). + intros (X S); constructor 1; + [ apply (λr:X ⇒_\r1 S.λf:S.{x ∈ X | x ♮r f}); intros; simplify; apply (.= (e‡#)); apply refl1 + | intros; simplify; split; intros; simplify; + [ change with (∀x. x ♮a b → x ♮a' b'); intros; + apply (. (#‡e1^-1)); whd in e; apply (if ?? (e ??)); assumption + | change with (∀x. x ♮a' b' → x ♮a b); intros; + apply (. (#‡e1)); whd in e; apply (fi ?? (e ??));assumption]] qed. -lemma associative_composition: - ∀A,B,C,D. - ∀r1:binary_relation A B. - ∀r2:binary_relation B C. - ∀r3:binary_relation C D. - (r1 ∘ r2) ∘ r3 = r1 ∘ (r2 ∘ r3). - intros 9; - split; intro; - cases H; clear H; cases H1; clear H1; - [cases H; clear H | cases H2; clear H2] - cases H1; clear H1; - exists; try assumption; - split; try assumption; - exists; try assumption; - split; assumption. +definition extS: ∀X,S:REL. ∀r:X ⇒_\r1 S. Ω^S ⇒_1 Ω^X. + (* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*) + intros (X S r); constructor 1; + [ intro F; constructor 1; constructor 1; + [ apply (λx. x ∈ X ∧ ∃a:S. a ∈ F ∧ x ♮r a); + | intros; split; intro; cases f (H1 H2); clear f; split; + [ apply (. (e^-1‡#)); assumption + |3: apply (. (e‡#)); assumption + |2,4: cases H2 (w H3); exists; [1,3: apply w] + [ apply (. (#‡(e^-1‡#))); assumption + | apply (. (#‡(e‡#))); assumption]]] + | intros; split; simplify; intros; cases f; cases e1; split; + [1,3: assumption + |2,4: exists; [1,3: apply w] + [ apply (. (#‡e^-1)‡#); assumption + | apply (. (#‡e)‡#); assumption]]] +qed. +(* +lemma equalset_extS_id_X_X: ∀o:REL.∀X.extS ?? (id1 ? o) X = X. + intros; + unfold extS; simplify; + split; simplify; + [ intros 2; change with (a ∈ X); + cases f; clear f; + cases H; clear H; + cases x; clear x; + change in f2 with (eq1 ? a w); + apply (. (f2\sup -1‡#)); + assumption + | intros 2; change in f with (a ∈ X); + split; + [ whd; exact I + | exists; [ apply a ] + split; + [ assumption + | change with (a = a); apply refl]]] qed. -lemma composition_morphism: - ∀A,B,C. - ∀r1,r1':binary_relation A B. - ∀r2,r2':binary_relation B C. - r1 = r1' → r2 = r2' → r1 ∘ r2 = r1' ∘ r2'. - intros 11; split; intro; - cases H2; clear H2; cases H3; clear H3; - [ lapply (if ?? (H x w) H2) | lapply (fi ?? (H x w) H2) ] - [ lapply (if ?? (H1 w y) H4)| lapply (fi ?? (H1 w y) H4) ] - exists; try assumption; - split; assumption. -qed. - -definition binary_relation_setoid: Type → Type → setoid. - intros (A B); - constructor 1; - [ apply (binary_relation A B) - | constructor 1; - [ apply equal_relations - | apply refl_equal_relations - | apply sym_equal_relations - | apply trans_equal_relations - ]] +lemma extS_com: ∀o1,o2,o3,c1,c2,S. extS o1 o3 (c2 ∘ c1) S = extS o1 o2 c1 (extS o2 o3 c2 S). + intros; unfold extS; simplify; split; intros; simplify; intros; + [ cases f (H1 H2); cases H2 (w H3); clear f H2; split; [assumption] + cases H3 (H4 H5); cases H5 (w1 H6); clear H3 H5; cases H6 (H7 H8); clear H6; + exists; [apply w1] split [2: assumption] constructor 1; [assumption] + exists; [apply w] split; assumption + | cases f (H1 H2); cases H2 (w H3); clear f H2; split; [assumption] + cases H3 (H4 H5); cases H4 (w1 H6); clear H3 H4; cases H6 (w2 H7); clear H6; + cases H7; clear H7; exists; [apply w2] split; [assumption] exists [apply w] split; + assumption] qed. +*) -definition REL: category. - constructor 1; - [ apply Type - | intros; apply (binary_relation_setoid T T1) - | intros; constructor 1; intros; apply (eq ? o1 o2); - | intros; constructor 1; - [ apply composition - | apply composition_morphism - ] - | intros; unfold mk_binary_morphism; simplify; - apply associative_composition - |6,7: intros 5; simplify; split; intro; - [1,3: cases H; clear H; cases H1; clear H1; - [ alias id "eq_elim_r''" = "cic:/matita/logic/equality/eq_elim_r''.con". - apply (eq_elim_r'' ? w ?? x H); assumption - | alias id "eq_rect" = "cic:/matita/logic/equality/eq_rect.con". - apply (eq_rect ? w ?? y H2); assumption ] - assumption - |*: exists; try assumption; split; - alias id "refl_eq" = "cic:/matita/logic/equality/eq.ind#xpointer(1/1/1)". - first [ apply refl_eq | assumption ]]] -qed. - -definition full_subset: ∀s:REL. Ω \sup s ≝ λs.{x | True}. - -coercion full_subset. \ No newline at end of file +(* the same as ⋄ for a basic pair *) +definition image: ∀U,V:REL. (U ⇒_\r1 V) ⇒_2 (Ω^U ⇒_2 Ω^V). + intros; constructor 1; + [ intro r; constructor 1; + [ apply (λS: Ω^U. {y | ∃x:U. x ♮r y ∧ x ∈ S }); + intros; simplify; split; intro; cases e1; exists [1,3: apply w] + [ apply (. (#‡e^-1)‡#); assumption + | apply (. (#‡e)‡#); assumption] + | intros; split; + [ intro y; simplify; intro yA; cases yA; exists; [ apply w ]; + apply (. #‡(#‡e^-1)); assumption; + | intro y; simplify; intro yA; cases yA; exists; [ apply w ]; + apply (. #‡(#‡e)); assumption;]] + | simplify; intros; intro y; simplify; split; simplify; intros (b H); cases H; + exists; [1,3: apply w]; cases x; split; try assumption; + [ apply (if ?? (e ??)); | apply (fi ?? (e ??)); ] assumption;] +qed. + +(* the same as □ for a basic pair *) +definition minus_star_image: ∀U,V:REL. (U ⇒_\r1 V) ⇒_2 (Ω^U ⇒_2 Ω^V). + intros; constructor 1; intros; + [ constructor 1; + [ apply (λS: Ω^U. {y | ∀x:U. x ♮c y → x ∈ S}); + intros; simplify; split; intros; apply f; + [ apply (. #‡e); | apply (. #‡e ^ -1)] assumption; + | intros; split; intro; simplify; intros; + [ apply (. #‡e^-1);| apply (. #‡e); ] apply f; assumption;] + | intros; intro; simplify; split; simplify; intros; apply f; + [ apply (. (e x a2)); assumption | apply (. (e^-1 x a2)); assumption]] +qed. + +(* the same as Rest for a basic pair *) +definition star_image: ∀U,V:REL. (U ⇒_\r1 V) ⇒_2 (Ω^V ⇒_2 Ω^U). + intros; constructor 1; + [ intro r; constructor 1; + [ apply (λS: Ω \sup V. {x | ∀y:V. x ♮r y → y ∈ S}); + intros; simplify; split; intros; apply f; + [ apply (. e ‡#);| apply (. e^ -1‡#);] assumption; + | intros; split; simplify; intros; + [ apply (. #‡e^-1);| apply (. #‡e); ] apply f; assumption;] + | intros; intro; simplify; split; simplify; intros; apply f; + [ apply (. e a2 y); | apply (. e^-1 a2 y)] assumption;] +qed. + +(* the same as Ext for a basic pair *) +definition minus_image: ∀U,V:REL. (U ⇒_\r1 V) ⇒_2 (Ω^V ⇒_2 Ω^U). + intros; constructor 1; + [ intro r; constructor 1; + [ apply (λS: Ω^V. {x | ∃y:V. x ♮r y ∧ y ∈ S }). + intros; simplify; split; intros; cases e1; cases x; exists; [1,3: apply w] + split; try assumption; [ apply (. (e^-1‡#)); | apply (. (e‡#));] assumption; + | intros; simplify; split; simplify; intros; cases e1; cases x; + exists [1,3: apply w] split; try assumption; + [ apply (. (#‡e^-1)); | apply (. (#‡e));] assumption] + | intros; intro; simplify; split; simplify; intros; cases e1; exists [1,3: apply w] + cases x; split; try assumption; + [ apply (. e^-1 a2 w); | apply (. e a2 w)] assumption;] +qed. + +definition foo : ∀o1,o2:REL.carr1 (o1 ⇒_\r1 o2) → carr2 (setoid2_of_setoid1 (o1 ⇒_\r1 o2)) ≝ λo1,o2,x.x. + +interpretation "relation f⎻*" 'OR_f_minus_star r = (fun12 ?? (minus_star_image ? ?) (foo ?? r)). +interpretation "relation f⎻" 'OR_f_minus r = (fun12 ?? (minus_image ? ?) (foo ?? r)). +interpretation "relation f*" 'OR_f_star r = (fun12 ?? (star_image ? ?) (foo ?? r)). + +definition image_coercion: ∀U,V:REL. (U ⇒_\r1 V) → Ω^U ⇒_2 Ω^V. +intros (U V r Us); apply (image U V r); qed. +coercion image_coercion. + +(* minus_image is the same as ext *) + +theorem image_id: ∀o. (id1 REL o : carr2 (Ω^o ⇒_2 Ω^o)) =_1 (id2 SET1 Ω^o). + intros; unfold image_coercion; unfold image; simplify; + whd in match (?:carr2 ?); + intro U; simplify; split; simplify; intros; + [ change with (a ∈ U); + cases e; cases x; change in e1 with (w =_1 a); apply (. e1^-1‡#); assumption + | change in f with (a ∈ U); + exists; [apply a] split; [ change with (a = a); apply refl1 | assumption]] +qed. + +theorem minus_star_image_id: ∀o:REL. + ((id1 REL o)⎻* : carr2 (Ω^o ⇒_2 Ω^o)) =_1 (id2 SET1 Ω^o). + intros; unfold minus_star_image; simplify; intro U; simplify; + split; simplify; intros; + [ change with (a ∈ U); apply f; change with (a=a); apply refl1 + | change in f1 with (eq1 ? x a); apply (. f1‡#); apply f] +qed. + +alias symbol "compose" (instance 5) = "category2 composition". +alias symbol "compose" (instance 4) = "category1 composition". +theorem image_comp: ∀A,B,C.∀r:B ⇒_\r1 C.∀s:A ⇒_\r1 B. + ((r ∘ s) : carr2 (Ω^A ⇒_2 Ω^C)) =_1 r ∘ s. + intros; intro U; split; intro x; (unfold image; unfold SET1; simplify); + intro H; cases H; + cases x1; [cases f|cases f1]; exists; [1,3: apply w1] cases x2; split; try assumption; + exists; try assumption; split; assumption; +qed. + +theorem minus_star_image_comp: + ∀A,B,C.∀r:B ⇒_\r1 C.∀s:A ⇒_\r1 B. + minus_star_image A C (r ∘ s) =_1 minus_star_image B C r ∘ (minus_star_image A B s). + intros; unfold minus_star_image; intro X; simplify; split; simplify; intros; + [ whd; intros; simplify; whd; intros; apply f; exists; try assumption; split; assumption; + | cases f1; cases x1; apply f; assumption] +qed. + + +(* +(*CSC: unused! *) +theorem ext_comp: + ∀o1,o2,o3: REL. + ∀a: arrows1 ? o1 o2. + ∀b: arrows1 ? o2 o3. + ∀x. ext ?? (b∘a) x = extS ?? a (ext ?? b x). + intros; + unfold ext; unfold extS; simplify; split; intro; simplify; intros; + cases f; clear f; split; try assumption; + [ cases f2; clear f2; cases x1; clear x1; exists; [apply w] split; + [1: split] assumption; + | cases H; clear H; cases x1; clear x1; exists [apply w]; split; + [2: cases f] assumption] +qed. +*) + +axiom daemon : False. + +theorem extS_singleton: + ∀o1,o2.∀a.∀x.extS o1 o2 a {(x)} = ext o1 o2 a x. + intros; unfold extS; unfold ext; unfold singleton; simplify; + split; intros 2; simplify; simplify in f; + [ cases f; cases e; cases x1; change in f2 with (x =_1 w); apply (. #‡f2); assumption; + | split; try apply I; exists [apply x] split; try assumption; change with (x = x); apply rule #;] qed. \ No newline at end of file