X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fformal_topology%2Frelations.ma;h=789f312cf0260da24d333203d898af38a3abca3f;hb=fa5cd121c672589afc0ac8ddd5d184897a38c7c6;hp=301e9487ae801593e0bef670f4ae7ba514314234;hpb=1ed4fe0f28d3b0b915387330cd722bfb80fb1063;p=helm.git diff --git a/helm/software/matita/library/formal_topology/relations.ma b/helm/software/matita/library/formal_topology/relations.ma index 301e9487a..789f312cf 100644 --- a/helm/software/matita/library/formal_topology/relations.ma +++ b/helm/software/matita/library/formal_topology/relations.ma @@ -108,7 +108,10 @@ coercion binary_relation_setoid_of_arrow1_REL. notation > "B ⇒_\r1 C" right associative with precedence 72 for @{'arrows1_REL $B $C}. notation "B ⇒\sub (\r 1) C" right associative with precedence 72 for @{'arrows1_REL $B $C}. -interpretation "'arrows1_SET" 'arrows1_REL A B = (arrows1 REL A B). +interpretation "'arrows1_REL" 'arrows1_REL A B = (arrows1 REL A B). +notation > "B ⇒_\r2 C" right associative with precedence 72 for @{'arrows2_REL $B $C}. +notation "B ⇒\sub (\r 2) C" right associative with precedence 72 for @{'arrows2_REL $B $C}. +interpretation "'arrows2_REL" 'arrows2_REL A B = (arrows2 (category2_of_category1 REL) A B). definition full_subset: ∀s:REL. Ω^s. @@ -137,25 +140,24 @@ definition ext: ∀X,S:REL. (X ⇒_\r1 S) × S ⇒_1 (Ω^X). apply (. (#‡e1)); whd in e; apply (fi ?? (e ??));assumption]] qed. -(* -definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. +definition extS: ∀X,S:REL. ∀r:X ⇒_\r1 S. Ω^S ⇒_1 Ω^X. (* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*) intros (X S r); constructor 1; [ intro F; constructor 1; constructor 1; [ apply (λx. x ∈ X ∧ ∃a:S. a ∈ F ∧ x ♮r a); | intros; split; intro; cases f (H1 H2); clear f; split; - [ apply (. (H‡#)); assumption - |3: apply (. (H\sup -1‡#)); assumption + [ apply (. (e^-1‡#)); assumption + |3: apply (. (e‡#)); assumption |2,4: cases H2 (w H3); exists; [1,3: apply w] - [ apply (. (#‡(H‡#))); assumption - | apply (. (#‡(H \sup -1‡#))); assumption]]] - | intros; split; simplify; intros; cases f; cases H1; split; + [ apply (. (#‡(e^-1‡#))); assumption + | apply (. (#‡(e‡#))); assumption]]] + | intros; split; simplify; intros; cases f; cases e1; split; [1,3: assumption |2,4: exists; [1,3: apply w] - [ apply (. (#‡H)‡#); assumption - | apply (. (#‡H\sup -1)‡#); assumption]]] + [ apply (. (#‡e^-1)‡#); assumption + | apply (. (#‡e)‡#); assumption]]] qed. - +(* lemma equalset_extS_id_X_X: ∀o:REL.∀X.extS ?? (id1 ? o) X = X. intros; unfold extS; simplify; @@ -190,88 +192,113 @@ qed. *) (* the same as ⋄ for a basic pair *) -definition image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^U ⇒_1 Ω^V. +definition image: ∀U,V:REL. (U ⇒_\r1 V) ⇒_2 (Ω^U ⇒_2 Ω^V). intros; constructor 1; - [ apply (λr:U ⇒_\r1 V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S }); - intros; simplify; split; intro; cases e1; exists [1,3: apply w] + [ intro r; constructor 1; + [ apply (λS: Ω^U. {y | ∃x:U. x ♮r y ∧ x ∈ S }); + intros; simplify; split; intro; cases e1; exists [1,3: apply w] [ apply (. (#‡e^-1)‡#); assumption | apply (. (#‡e)‡#); assumption] - | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1^-1)); cases x; split; try assumption; - apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1)); cases x; split; try assumption; - apply (if ?? (e ^ -1 ??)); assumption]] + | intros; split; + [ intro y; simplify; intro yA; cases yA; exists; [ apply w ]; + apply (. #‡(#‡e^-1)); assumption; + | intro y; simplify; intro yA; cases yA; exists; [ apply w ]; + apply (. #‡(#‡e)); assumption;]] + | simplify; intros; intro y; simplify; split; simplify; intros (b H); cases H; + exists; [1,3: apply w]; cases x; split; try assumption; + [ apply (if ?? (e ??)); | apply (fi ?? (e ??)); ] assumption;] qed. (* the same as □ for a basic pair *) -definition minus_star_image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^U ⇒_1 Ω^V. - intros; constructor 1; - [ apply (λr:U ⇒_\r1 V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S}); - intros; simplify; split; intros; apply f; - [ apply (. #‡e); assumption - | apply (. #‡e ^ -1); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1^ -1); | apply (. #‡e1 )] - apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] +definition minus_star_image: ∀U,V:REL. (U ⇒_\r1 V) ⇒_2 (Ω^U ⇒_2 Ω^V). + intros; constructor 1; intros; + [ constructor 1; + [ apply (λS: Ω^U. {y | ∀x:U. x ♮c y → x ∈ S}); + intros; simplify; split; intros; apply f; + [ apply (. #‡e); | apply (. #‡e ^ -1)] assumption; + | intros; split; intro; simplify; intros; + [ apply (. #‡e^-1);| apply (. #‡e); ] apply f; assumption;] + | intros; intro; simplify; split; simplify; intros; apply f; + [ apply (. (e x a2)); assumption | apply (. (e^-1 x a2)); assumption]] qed. (* the same as Rest for a basic pair *) -definition star_image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^V ⇒_1 Ω^U. +definition star_image: ∀U,V:REL. (U ⇒_\r1 V) ⇒_2 (Ω^V ⇒_2 Ω^U). intros; constructor 1; - [ apply (λr:U ⇒_\r1 V.λS: Ω \sup V. {x | ∀y:V. x ♮r y → y ∈ S}); - intros; simplify; split; intros; apply f; - [ apply (. e ‡#); assumption - | apply (. e^ -1‡#); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1 ^ -1); | apply (. #‡e1)] - apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] + [ intro r; constructor 1; + [ apply (λS: Ω \sup V. {x | ∀y:V. x ♮r y → y ∈ S}); + intros; simplify; split; intros; apply f; + [ apply (. e ‡#);| apply (. e^ -1‡#);] assumption; + | intros; split; simplify; intros; + [ apply (. #‡e^-1);| apply (. #‡e); ] apply f; assumption;] + | intros; intro; simplify; split; simplify; intros; apply f; + [ apply (. e a2 y); | apply (. e^-1 a2 y)] assumption;] qed. (* the same as Ext for a basic pair *) -definition minus_image: ∀U,V:REL. (U ⇒_\r1 V) × Ω^V ⇒_1 Ω^U. +definition minus_image: ∀U,V:REL. (U ⇒_\r1 V) ⇒_2 (Ω^V ⇒_2 Ω^U). intros; constructor 1; - [ apply (λr:U ⇒_\r1 V.λS: Ω \sup V. {x | (*∃x:U. x ♮r y ∧ x ∈ S*) - exT ? (λy:V.x ♮r y ∧ y ∈ S) }); - intros; simplify; split; intro; cases e1; exists [1,3: apply w] - [ apply (. (e ^ -1‡#)‡#); assumption - | apply (. (e‡#)‡#); assumption] - | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; - apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1)); cases x; split; try assumption; - apply (if ?? (e ^ -1 ??)); assumption]] + [ intro r; constructor 1; + [ apply (λS: Ω^V. {x | ∃y:V. x ♮r y ∧ y ∈ S }). + intros; simplify; split; intros; cases e1; cases x; exists; [1,3: apply w] + split; try assumption; [ apply (. (e^-1‡#)); | apply (. (e‡#));] assumption; + | intros; simplify; split; simplify; intros; cases e1; cases x; + exists [1,3: apply w] split; try assumption; + [ apply (. (#‡e^-1)); | apply (. (#‡e));] assumption] + | intros; intro; simplify; split; simplify; intros; cases e1; exists [1,3: apply w] + cases x; split; try assumption; + [ apply (. e^-1 a2 w); | apply (. e a2 w)] assumption;] qed. +definition foo : ∀o1,o2:REL.carr1 (o1 ⇒_\r1 o2) → carr2 (setoid2_of_setoid1 (o1 ⇒_\r1 o2)) ≝ λo1,o2,x.x. + +interpretation "relation f⎻*" 'OR_f_minus_star r = (fun12 ?? (minus_star_image ? ?) (foo ?? r)). +interpretation "relation f⎻" 'OR_f_minus r = (fun12 ?? (minus_image ? ?) (foo ?? r)). +interpretation "relation f*" 'OR_f_star r = (fun12 ?? (star_image ? ?) (foo ?? r)). + +definition image_coercion: ∀U,V:REL. (U ⇒_\r1 V) → Ω^U ⇒_2 Ω^V. +intros (U V r Us); apply (image U V r); qed. +coercion image_coercion. + (* minus_image is the same as ext *) -theorem image_id: ∀o,U. image o o (id1 REL o) U = U. - intros; unfold image; simplify; split; simplify; intros; +theorem image_id: ∀o. (id1 REL o : carr2 (Ω^o ⇒_2 Ω^o)) =_1 (id2 SET1 Ω^o). + intros; unfold image_coercion; unfold image; simplify; + whd in match (?:carr2 ?); + intro U; simplify; split; simplify; intros; [ change with (a ∈ U); - cases e; cases x; change in f with (eq1 ? w a); apply (. f^-1‡#); assumption + cases e; cases x; change in e1 with (w =_1 a); apply (. e1^-1‡#); assumption | change in f with (a ∈ U); exists; [apply a] split; [ change with (a = a); apply refl1 | assumption]] qed. -theorem minus_star_image_id: ∀o,U. minus_star_image o o (id1 REL o) U = U. - intros; unfold minus_star_image; simplify; split; simplify; intros; +theorem minus_star_image_id: ∀o:REL. + ((id1 REL o)⎻* : carr2 (Ω^o ⇒_2 Ω^o)) =_1 (id2 SET1 Ω^o). + intros; unfold minus_star_image; simplify; intro U; simplify; + split; simplify; intros; [ change with (a ∈ U); apply f; change with (a=a); apply refl1 | change in f1 with (eq1 ? x a); apply (. f1‡#); apply f] qed. -alias symbol "compose" (instance 2) = "category1 composition". -theorem image_comp: ∀A,B,C,r,s,X. image A C (r ∘ s) X = image B C r (image A B s X). - intros; unfold image; simplify; split; simplify; intros; cases e; clear e; cases x; - clear x; [ cases f; clear f; | cases f1; clear f1 ] - exists; try assumption; cases x; clear x; split; try assumption; - exists; try assumption; split; assumption. +alias symbol "compose" (instance 5) = "category2 composition". +alias symbol "compose" (instance 4) = "category1 composition". +theorem image_comp: ∀A,B,C.∀r:B ⇒_\r1 C.∀s:A ⇒_\r1 B. + ((r ∘ s) : carr2 (Ω^A ⇒_2 Ω^C)) =_1 r ∘ s. + intros; intro U; split; intro x; (unfold image; unfold SET1; simplify); + intro H; cases H; + cases x1; [cases f|cases f1]; exists; [1,3: apply w1] cases x2; split; try assumption; + exists; try assumption; split; assumption; qed. theorem minus_star_image_comp: - ∀A,B,C,r,s,X. - minus_star_image A C (r ∘ s) X = minus_star_image B C r (minus_star_image A B s X). - intros; unfold minus_star_image; simplify; split; simplify; intros; whd; intros; - [ apply f; exists; try assumption; split; assumption - | change with (x ∈ X); cases f1; cases x1; apply f; assumption] + ∀A,B,C.∀r:B ⇒_\r1 C.∀s:A ⇒_\r1 B. + minus_star_image A C (r ∘ s) =_1 minus_star_image B C r ∘ (minus_star_image A B s). + intros; unfold minus_star_image; intro X; simplify; split; simplify; intros; + [ whd; intros; simplify; whd; intros; apply f; exists; try assumption; split; assumption; + | cases f1; cases x1; apply f; assumption] qed. + (* (*CSC: unused! *) theorem ext_comp: @@ -287,13 +314,13 @@ theorem ext_comp: | cases H; clear H; cases x1; clear x1; exists [apply w]; split; [2: cases f] assumption] qed. +*) + +axiom daemon : False. theorem extS_singleton: - ∀o1,o2.∀a:arrows1 ? o1 o2.∀x.extS o1 o2 a (singleton o2 x) = ext o1 o2 a x. + ∀o1,o2.∀a.∀x.extS o1 o2 a {(x)} = ext o1 o2 a x. intros; unfold extS; unfold ext; unfold singleton; simplify; - split; intros 2; simplify; cases f; split; try assumption; - [ cases H; cases x1; change in f2 with (eq1 ? x w); apply (. #‡f2 \sup -1); - assumption - | exists; try assumption; split; try assumption; change with (x = x); apply refl] -qed. -*) + split; intros 2; simplify; simplify in f; + [ cases f; cases e; cases x1; change in f2 with (x =_1 w); apply (. #‡f2); assumption; + | split; try apply I; exists [apply x] split; try assumption; change with (x = x); apply rule #;] qed. \ No newline at end of file