X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Flist%2Flist.ma;h=e4787fe8422fcf55a0888cc9da3b4d237239ff0c;hb=b82d421fb24bd0eb8848dc7b978ce1165fb526ab;hp=ffa2c8ef9ac106c007f701cef1cf21b589f51a19;hpb=55b82bd235d82ff7f0a40d980effe1efde1f5073;p=helm.git diff --git a/helm/software/matita/library/list/list.ma b/helm/software/matita/library/list/list.ma index ffa2c8ef9..e4787fe84 100644 --- a/helm/software/matita/library/list/list.ma +++ b/helm/software/matita/library/list/list.ma @@ -12,16 +12,18 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/list/". include "logic/equality.ma". +include "datatypes/bool.ma". include "higher_order_defs/functions.ma". +include "nat/plus.ma". +include "nat/orders.ma". -inductive list (A:Set) : Set := +inductive list (A:Type) : Type := | nil: list A | cons: A -> list A -> list A. notation "hvbox(hd break :: tl)" - right associative with precedence 46 + right associative with precedence 47 for @{'cons $hd $tl}. notation "[ list0 x sep ; ]" @@ -32,19 +34,18 @@ notation "hvbox(l1 break @ l2)" right associative with precedence 47 for @{'append $l1 $l2 }. -interpretation "nil" 'nil = (cic:/matita/list/list.ind#xpointer(1/1/1) _). +interpretation "nil" 'nil = (cic:/matita/list/list/list.ind#xpointer(1/1/1) _). interpretation "cons" 'cons hd tl = - (cic:/matita/list/list.ind#xpointer(1/1/2) _ hd tl). + (cic:/matita/list/list/list.ind#xpointer(1/1/2) _ hd tl). (* theorem test_notation: [O; S O; S (S O)] = O :: S O :: S (S O) :: []. *) theorem nil_cons: - \forall A:Set.\forall l:list A.\forall a:A. - a::l <> []. + \forall A:Type.\forall l:list A.\forall a:A. a::l ≠ []. intros; unfold Not; intros; - discriminate H. + destruct H. qed. let rec id_list A (l: list A) on l := @@ -57,14 +58,14 @@ let rec append A (l1: list A) l2 on l1 := [ nil => l2 | (cons hd tl) => hd :: append A tl l2 ]. -definition tail := \lambda A:Set. \lambda l: list A. +definition tail := \lambda A:Type. \lambda l: list A. match l with [ nil => [] | (cons hd tl) => tl]. -interpretation "append" 'append l1 l2 = (cic:/matita/list/append.con _ l1 l2). +interpretation "append" 'append l1 l2 = (cic:/matita/list/list/append.con _ l1 l2). -theorem append_nil: \forall A:Set.\forall l:list A.l @ [] = l. +theorem append_nil: \forall A:Type.\forall l:list A.l @ [] = l. intros; elim l; [ reflexivity; @@ -74,7 +75,7 @@ theorem append_nil: \forall A:Set.\forall l:list A.l @ [] = l. ] qed. -theorem associative_append: \forall A:Set.associative (list A) (append A). +theorem associative_append: \forall A:Type.associative (list A) (append A). intros; unfold; intros; elim x; [ simplify; @@ -86,15 +87,45 @@ theorem associative_append: \forall A:Set.associative (list A) (append A). qed. theorem cons_append_commute: - \forall A:Set.\forall l1,l2:list A.\forall a:A. + \forall A:Type.\forall l1,l2:list A.\forall a:A. a :: (l1 @ l2) = (a :: l1) @ l2. intros; reflexivity; qed. +lemma append_cons:\forall A.\forall a:A.\forall l,l1. +l@(a::l1)=(l@[a])@l1. +intros. +rewrite > associative_append. +reflexivity. +qed. + +inductive permutation (A:Type) : list A -> list A -> Prop \def + | refl : \forall l:list A. permutation ? l l + | swap : \forall l:list A. \forall x,y:A. + permutation ? (x :: y :: l) (y :: x :: l) + | trans : \forall l1,l2,l3:list A. + permutation ? l1 l2 -> permut1 ? l2 l3 -> permutation ? l1 l3 +with permut1 : list A -> list A -> Prop \def + | step : \forall l1,l2:list A. \forall x,y:A. + permut1 ? (l1 @ (x :: y :: l2)) (l1 @ (y :: x :: l2)). + +include "nat/nat.ma". + +definition x1 \def S O. +definition x2 \def S x1. +definition x3 \def S x2. + +theorem tmp : permutation nat (x1 :: x2 :: x3 :: []) (x1 :: x3 :: x2 :: []). + apply (trans ? (x1 :: x2 :: x3 :: []) (x1 :: x2 :: x3 :: []) ?). + apply refl. + apply (step ? (x1::[]) [] x2 x3). + qed. + + (* theorem nil_append_nil_both: - \forall A:Set.\forall l1,l2:list A. + \forall A:Type.\forall l1,l2:list A. l1 @ l2 = [] \to l1 = [] \land l2 = []. *) @@ -110,3 +141,63 @@ simplify. reflexivity. qed. *) + +definition nth ≝ + λA:Type. + let rec nth l d n on n ≝ + match n with + [ O ⇒ + match l with + [ nil ⇒ d + | cons (x : A) _ ⇒ x + ] + | S n' ⇒ nth (tail ? l) d n'] + in nth. + +definition map ≝ + λA,B:Type.λf:A→B. + let rec map (l : list A) on l : list B ≝ + match l with [ nil ⇒ nil ? | cons x tl ⇒ f x :: (map tl)] + in map. + +definition foldr ≝ + λA,B:Type.λf:A→B→B.λb:B. + let rec foldr (l : list A) on l : B := + match l with [ nil ⇒ b | (cons a l) ⇒ f a (foldr l)] + in foldr. + +definition length ≝ λT:Type.λl:list T.foldr T nat (λx,c.S c) O l. + +definition filter \def + \lambda T:Type.\lambda l:list T.\lambda p:T \to bool. + foldr T (list T) + (\lambda x,l0.match (p x) with [ true => x::l0 | false => l0]) [] l. + +definition iota : nat → nat → list nat ≝ + λn,m. nat_rect (λ_.list ?) (nil ?) (λx,acc.cons ? (n+x) acc) m. + +(* ### induction principle for functions visiting 2 lists in parallel *) +lemma list_ind2 : + ∀T1,T2:Type.∀l1:list T1.∀l2:list T2.∀P:list T1 → list T2 → Prop. + length ? l1 = length ? l2 → + (P (nil ?) (nil ?)) → + (∀tl1,tl2,hd1,hd2. P tl1 tl2 → P (hd1::tl1) (hd2::tl2)) → + P l1 l2. +intros (T1 T2 l1 l2 P Hl Pnil Pcons); +elim l1 in Hl l2 ⊢ % 1 (l2 x1); [ cases l2; intros (Hl); [assumption| simplify in Hl; destruct Hl]] +intros 3 (tl1 IH l2); cases l2; [1: simplify; intros 1 (Hl); destruct Hl] +intros 1 (Hl); apply Pcons; apply IH; simplify in Hl; destruct Hl; assumption; +qed. + +lemma eq_map : ∀A,B,f,g,l. (∀x.f x = g x) → map A B f l = map A B g l. +intros (A B f g l Efg); elim l; simplify; [1: reflexivity ]; +rewrite > (Efg a); rewrite > H; reflexivity; +qed. + +lemma le_length_filter : \forall A,l,p.length A (filter A l p) \leq length A l. +intros;elim l + [simplify;apply le_n + |simplify;apply (bool_elim ? (p a));intro + [simplify;apply le_S_S;assumption + |simplify;apply le_S;assumption]] +qed.