X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fnat%2Fbertrand.ma;h=ce92ee4edc9d7015079831ff14314ae9c1f90aeb;hb=a79bf6edc13daaea8135ca71fdc92e02e229f030;hp=d3472d6758f31cfcaf90e8bbad5f6a9d89f751ee;hpb=5b83f526bc4c63424313df91173b844699eada96;p=helm.git diff --git a/helm/software/matita/library/nat/bertrand.ma b/helm/software/matita/library/nat/bertrand.ma index d3472d675..ce92ee4ed 100644 --- a/helm/software/matita/library/nat/bertrand.ma +++ b/helm/software/matita/library/nat/bertrand.ma @@ -15,8 +15,10 @@ include "nat/sqrt.ma". include "nat/chebyshev_teta.ma". include "nat/chebyshev.ma". -include "list/list.ma". +include "list/in.ma". +include "list/sort.ma". include "nat/o.ma". +include "nat/sieve.ma". let rec list_divides l n \def match l with @@ -32,282 +34,305 @@ definition lprim : nat \to list nat \def | false => aux m1 (n-m1::acc)]] in aux (pred n) []. -let rec filter A l p on l \def +let rec checker l \def match l with - [ nil => nil A - | cons (a:A) (tl:list A) => match (p a) with - [ true => a::(filter A tl p) - | false => filter A tl p ]]. + [ nil => true + | cons h1 t1 => match t1 with + [ nil => true + | cons h2 t2 => (andb (checker t1) (leb h1 (2*h2))) ]]. -let rec length A (l:list A) on l \def - match l with - [ nil => O - | cons (a:A) (tl:list A) => S (length A tl) ]. - -definition list_n : nat \to list nat \def - \lambda n.let rec aux n k \def - match n with - [ O => nil nat - | S n1 => k::aux n1 (S k) ] - in aux (pred n) 2. - -let rec sieve_aux l1 l2 t on t \def - match t with - [ O => l1 - | S t1 => match l2 with - [ nil => l1 - | cons n tl => sieve_aux (n::l1) (filter nat tl (\lambda x.notb (divides_b n x))) t1]]. - -definition sieve : nat \to list nat \def - \lambda m.sieve_aux [] (list_n m) m. - -definition ord_list \def - \lambda l. - \forall a,b,l1,l2.l = l1@(a::b::l2) \to b \leq a. - -definition in_list \def - \lambda A.\lambda a:A.\lambda l:list A. - \exists l1,l2.l = l1@(a::l2). - -lemma in_list_filter_to_p_true : \forall l,x,p.in_list nat x (filter nat l p) \to p x = true. -intros;elim H;elim H1;clear H H1;generalize in match H2;generalize in match a;elim l 0 - [simplify;intro;elim l1 - [simplify in H;destruct H - |simplify in H1;destruct H1] - |intros;simplify in H1;apply (bool_elim ? (p t));intro; - rewrite > H3 in H1;simplify in H1 - [generalize in match H1;elim l2 - [simplify in H4;destruct H4;assumption - |simplify in H5;destruct H5;apply (H l3);assumption] - |apply (H l2);assumption]] +lemma checker_cons : \forall t,l.checker (t::l) = true \to checker l = true. +intros 2;simplify;intro;elim l in H ⊢ % + [reflexivity + |change in H1 with (andb (checker (a::l1)) (leb t (a+(a+O))) = true); + apply (andb_true_true ? ? H1)] qed. -lemma in_list_cons : \forall l,x,y.in_list nat x l \to in_list nat x (y::l). -intros;unfold in H;unfold;elim H;elim H1;apply (ex_intro ? ? (y::a)); -apply (ex_intro ? ? a1);simplify;rewrite < H2;reflexivity. +theorem checker_sound : \forall l1,l2,l,x,y.l = l1@(x::y::l2) \to + checker l = true \to x \leq 2*y. +intro;elim l1 0 + [simplify;intros 5;rewrite > H;simplify;intro; + apply leb_true_to_le;apply (andb_true_true_r ? ? H1); + |simplify;intros;rewrite > H1 in H2;lapply (checker_cons ? ? H2); + apply (H l2 ? ? ? ? Hletin);reflexivity] qed. -lemma in_list_tail : \forall l,x,y.in_list nat x (y::l) \to x \neq y \to in_list nat x l. -intros;elim H;elim H2;generalize in match H3;elim a - [simplify in H4;destruct H4;elim H1;reflexivity - |simplify in H5;destruct H5;apply (ex_intro ? ? l1);apply (ex_intro ? ? a1); - reflexivity] -qed. - -lemma in_list_filter : \forall l,p,x.in_list nat x (filter nat l p) \to in_list nat x l. -intros;elim H;elim H1;generalize in match H2;generalize in match a;elim l 0 - [simplify;intro;elim l1 - [simplify in H3;destruct H3 - |simplify in H4;destruct H4] - |intros;simplify in H4;apply (bool_elim ? (p t));intro - [rewrite > H5 in H4;simplify in H4;generalize in match H4;elim l2 - [simplify in H6;destruct H6;apply (ex_intro ? ? []);apply (ex_intro ? ? l1); - simplify;reflexivity - |simplify in H7;destruct H7;apply in_list_cons;apply (H3 ? Hcut1);] - |rewrite > H5 in H4;simplify in H4;apply in_list_cons;apply (H3 ? H4);]] -qed. +definition bertrand \def \lambda n. +\exists p.n < p \land p \le 2*n \land (prime p). -lemma in_list_filter_r : \forall l,p,x.in_list nat x l \to p x = true \to in_list nat x (filter nat l p). -intros;elim H;elim H2;rewrite > H3;elim a - [simplify;rewrite > H1;simplify;apply (ex_intro ? ? []);apply (ex_intro ? ? (filter nat a1 p)); - reflexivity - |simplify;elim (p t);simplify - [apply in_list_cons;assumption - |assumption]] +definition not_bertrand \def \lambda n. +\forall p.n < p \to p \le 2*n \to \not (prime p). + +(* +lemma list_of_primes_SO: \forall l.list_of_primes 1 l \to +l = []. +intro.cases l;intros + [reflexivity + |apply False_ind.unfold in H. + absurd ((prime n) \land n \le 1) + [apply H. + apply in_list_head + |intro.elim H1. + elim H2. + apply (lt_to_not_le ? ? H4 H3) + ] + ] qed. - -axiom sieve_monotonic : \forall n.sieve (S n) = sieve n \lor sieve (S n) = (S n)::sieve n. +*) -axiom daemon : False. +lemma min_prim : \forall n.\exists p. n < p \land prime p \land + \forall q.prime q \to q < p \to q \leq n. +intro;elim (le_to_or_lt_eq ? ? (le_O_n n)) + [apply (ex_intro ? ? (min_aux (S (n!)) (S n) primeb)); + split + [split + [apply le_min_aux; + |apply primeb_true_to_prime;apply f_min_aux_true;elim (ex_prime n); + [apply (ex_intro ? ? a);elim H1;elim H2;split + [split + [assumption + |rewrite > plus_n_O;apply le_plus + [assumption + |apply le_O_n]] + |apply prime_to_primeb_true;assumption] + |assumption]] + |intros;apply not_lt_to_le;intro;lapply (lt_min_aux_to_false ? ? ? ? H3 H2); + rewrite > (prime_to_primeb_true ? H1) in Hletin;destruct Hletin] + |apply (ex_intro ? ? 2);split + [split + [rewrite < H;apply lt_O_S + |apply primeb_true_to_prime;reflexivity] + |intros;elim (lt_to_not_le ? ? H2);apply prime_to_lt_SO;assumption]] +qed. -axiom in_list_cons_case : \forall A,x,a,l.in_list A x (a::l) \to - x = a \lor in_list A x l. - -lemma divides_to_prime_divides : \forall n,m.1 < m \to m < n \to m \divides n \to - \exists p.p \leq m \land prime p \land p \divides n. -intros;apply (ex_intro ? ? (nth_prime (max_prime_factor m)));split +theorem list_of_primes_to_bertrand: \forall n,pn,l.0 < n \to prime pn \to n Hcut;intros;unfold in H7; - elim H7;elim H8;clear H7 H8;generalize in match H9;elim a - [simplify in H7;destruct H7 - |simplify in H8;destruct H8]] - |intros 4;elim l2 - [simplify;split;intros - [elim (H1 p);elim (H5 H4);assumption - |elim (H1 p);apply (H7 H4 H5);intros;unfold in H8; - elim H8;elim H9;clear H8 H9;generalize in match H10;elim a - [simplify in H8;destruct H8 - |simplify in H9;destruct H9]] - |simplify;elim (H k (filter ? l (\lambda x.notb (divides_b t1 x))) (t1::l1) ? ? ? p) - [split;intros - [apply H5;assumption - |apply H6;assumption] - |intro;split;intros - [elim (in_list_cons_case ? ? ? ? H5); - [rewrite > H6;split - [split - [unfold;intros;split - [elim daemon (* aggiungere hp: ogni elemento di l2 è >= 2 *) - |intros;elim (le_to_or_lt_eq ? ? (divides_to_le ? ? ? H7)) - [elim (divides_to_prime_divides ? ? H8 H9 H7);elim H10; - elim H11;clear H10 H11;elim (H3 t1);elim H10 - [clear H10 H11;elim (H16 ? ? H12);elim (H2 a);clear H10; - apply H11 - [assumption - |apply (trans_le ? ? ? ? H15); - apply (trans_le ? ? ? H13); - apply lt_to_le;assumption - |intros; - (* sfruttare il fatto che a < t1 - e t1 è il minimo di t1::l *) - elim daemon] - |unfold;apply (ex_intro ? ? []); - apply (ex_intro ? ? l); - reflexivity] - |elim daemon (* aggiungere hp: ogni elemento di l2 è >= 2 *) - |assumption]] - |elim (H3 t1);elim H7 - [assumption - |apply (ex_intro ? ? []);apply (ex_intro ? ? l);reflexivity]] - |intros;elim (le_to_or_lt_eq t1 x) - [assumption - |rewrite > H8 in H7;lapply (in_list_filter_to_p_true ? ? ? H7); - lapply (divides_n_n x); - rewrite > (divides_to_divides_b_true ? ? ? Hletin1) in Hletin - [simplify in Hletin;destruct Hletin - |elim daemon (* aggiungere hp: ogni elemento di l2 è >= 2 *)] - |(* sfruttare il fatto che t1 è il minimo di t1::l *) - elim daemon]] - |elim (H2 p1);elim (H7 H6);split - [assumption - |intros;apply H10;apply in_list_cons;apply (in_list_filter ? ? ? H11);]] - |elim (decidable_eq_nat p1 t1) - [rewrite > H8;apply (ex_intro ? ? []);apply (ex_intro ? ? l1); - reflexivity - |apply in_list_cons;elim (H2 p1);apply (H10 H5 H6);intros; - apply (trans_le ? t1) - [elim (decidable_lt p1 t1) - [assumption - |lapply (not_lt_to_le ? ? H12); - lapply (decidable_divides t1 p1) - [elim Hletin1 - [elim H5;lapply (H15 ? H13) - [elim H8;symmetry;assumption - |(* per il solito discorso l2 >= 2 *) - elim daemon] - |elim (Not_lt_n_n p1);apply H7;apply in_list_filter_r - [elim (H3 p1);apply (in_list_tail ? ? t1) - [apply H15;split - [assumption - |intros;elim H5;intro;lapply (H18 ? H19) - [rewrite > Hletin2 in H16;elim (H9 H16); - lapply (H21 t1) - [elim (lt_to_not_le ? ? Hletin3 Hletin) - |apply (ex_intro ? ? []);apply (ex_intro ? ? l); - reflexivity] - |apply prime_to_lt_SO;elim (H2 p2);elim (H20 H16); - elim H22;assumption]] - |unfold;intro;apply H13;rewrite > H16;apply divides_n_n;] - |rewrite > (not_divides_to_divides_b_false ? ? ? H13); - [reflexivity - |elim daemon (* usare il solito >= 2 *)]]] - |elim daemon (* come sopra *)]] - |elim daemon (* t1::l è ordinata *)]]] - |intro;elim (H3 x);split;intros; - [split - [elim H5 - [assumption - |apply in_list_cons;apply (in_list_filter ? ? ? H7)] - |intros;elim (in_list_cons_case ? ? ? ? H8) - [rewrite > H9;intro;lapply (in_list_filter_to_p_true ? ? ? H7); - rewrite > (divides_to_divides_b_true ? ? ? H10) in Hletin - [simplify in Hletin;destruct Hletin - |elim daemon (* dal fatto che ogni elemento di t1::l è >= 2 *)] - |elim H5 - [apply H11;assumption - |apply in_list_cons;apply (in_list_filter ? ? ? H7)]]] - |elim H7;elim (in_list_cons_case ? ? ? ? (H6 ?)) - [elim (H9 x) - [rewrite > H10;unfold; - apply (ex_intro ? ? []);apply (ex_intro ? ? l1); - reflexivity - |apply divides_n_n;] - |split - [assumption - |intros;apply H9;apply in_list_cons;assumption] - |apply in_list_filter_r; - [assumption - |lapply (H9 t1) - [rewrite > (not_divides_to_divides_b_false ? ? ? Hletin); - [reflexivity - |(* solito >= 2 *) - elim daemon] - |apply in_list_head]]]] - |apply (trans_le ? ? ? (le_length_filter ? ? ?));apply le_S_S_to_le; - apply H4]]] + +theorem check_list2: \forall l. check_list l = true \to +\forall p. in_list nat p l \to 2 < p \to +\exists pp. in_list nat pp l \land pp < p \land p \le 2*pp. +intro.elim l 2 + [intros.apply False_ind.apply (not_in_list_nil ? ? H1) + |cases l1;intros + [lapply (in_list_singleton_to_eq ? ? ? H2) as H4. + apply False_ind. + apply (lt_to_not_eq ? ? H3). + apply sym_eq.apply eqb_true_to_eq. + rewrite > H4.apply H1 + |elim (check_list1 ? ? ? H1).clear H1. + elim H4.clear H4. + elim H1.clear H1. + elim (in_list_cons_case ? ? ? ? H2) + [apply (ex_intro ? ? n). + split + [split + [apply in_list_cons.apply in_list_head + |rewrite > H1.assumption + ] + |rewrite > H1.assumption + ] + |elim (H H6 p H1 H3).clear H. + apply (ex_intro ? ? a1). + elim H8.clear H8. + elim H.clear H. + split + [split + [apply in_list_cons.assumption + |assumption + ] + |assumption + ] + ] + ] + ] qed. -lemma sieve_soundness : \forall n.\forall p. - in_list ? p (sieve n) \to - p \leq n \land prime p. -intros;unfold sieve in H;lapply (sieve_prime n (S n) (list_n n) [] ? ? ? p) - [intros;split;intros; - [elim daemon (* H1 is absurd *) - |elim daemon (* da sistemare, bisognerebbe raggiungere l'assurdo sapendo che p1 è primo e < 2 *)] - |intro;split;intros - [split - [elim daemon (* vero, dalla H1 *) - |intros;elim daemon (* H2 è assurda *)] - |elim H1; - (* vera supponendo x >= 2, il che in effetti è doveroso sistemare nel teoremone di prima *) - elim daemon] - |elim daemon (* sempre vero, da dimostrare *) - |elim Hletin;elim (H1 H);split - [elim daemon (* si può ottenere da H *) - |assumption]] +(* qualcosa che non va con gli S *) +lemma le_to_bertrand : \forall n.O < n \to n \leq exp 2 8 \to bertrand n. +intros. +apply (list_of_primes_to_bertrand ? (S(exp 2 8)) (sieve (S(exp 2 8)))) + [assumption + |apply primeb_true_to_prime.reflexivity + |apply (le_to_lt_to_lt ? ? ? H1). + apply le_n + |lapply (sieve_sound1 (S(exp 2 8))) as H + [elim H.assumption + |apply leb_true_to_le.reflexivity + ] + |intros.apply (sieve_sound2 ? ? H3 H2) + |apply check_list2. + reflexivity + ] qed. -definition bertrand \def \lambda n. -\exists p.n < p \land p \le 2*n \land (prime p). +(*lemma pippo : \forall k,n.in_list ? (nth_prime (S k)) (sieve n) \to + \exists l.sieve n = l@((nth_prime (S k))::(sieve (nth_prime k))). +intros;elim H;elim H1;clear H H1;apply (ex_intro ? ? a); +cut (a1 = sieve (nth_prime k)) + [rewrite < Hcut;assumption + |lapply (sieve_sorted n);generalize in match H2*) -definition not_bertrand \def \lambda n. -\forall p.n < p \to p \le 2*n \to \not (prime p). +(* old proof by Wilmer +lemma le_to_bertrand : \forall n.O < n \to n \leq exp 2 8 \to bertrand n. +intros; +elim (min_prim n);apply (ex_intro ? ? a);elim H2;elim H3;clear H2 H3; +cut (a \leq 257) + [|apply not_lt_to_le;intro;apply (le_to_not_lt ? ? H1);apply (H4 ? ? H2); + apply primeb_true_to_prime;reflexivity] +split + [split + [assumption + |elim (prime_to_nth_prime a H6);generalize in match H2;cases a1 + [simplify;intro;rewrite < H3;rewrite < plus_n_O; + change in \vdash (? % ?) with (1+1);apply le_plus;assumption + |intro;lapply (H4 (nth_prime n1)) + [apply (trans_le ? (2*(nth_prime n1))) + [rewrite < H3; + cut (\exists l1,l2.sieve 257 = l1@((nth_prime (S n1))::((nth_prime n1)::l2))) + [elim Hcut1;elim H7;clear Hcut1 H7; + apply (checker_sound a2 a3 (sieve 257)) + [apply H8 + |reflexivity] + |elim (sieve_sound2 257 (nth_prime (S n1)) ? ?) + [elim (sieve_sound2 257 (nth_prime n1) ? ?) + [elim H8; + cut (\forall p.in_list ? p (a3@(nth_prime n1::a4)) \to prime p) + [|rewrite < H9;intros;apply (in_list_sieve_to_prime 257 p ? H10); + apply leb_true_to_le;reflexivity] + apply (ex_intro ? ? a2);apply (ex_intro ? ? a4); + elim H7;clear H7 H8; + cut ((nth_prime n1)::a4 = a5) + [|generalize in match H10; + lapply (sieve_sorted 257); + generalize in match Hletin1; + rewrite > H9 in ⊢ (? %→? ? % ?→?); + generalize in match Hcut1; + generalize in match a2; + elim a3 0 + [intro;elim l + [change in H11 with (nth_prime n1::a4 = nth_prime (S n1)::a5); + destruct H11;elim (eq_to_not_lt ? ? Hcut2); + apply increasing_nth_prime + |change in H12 with (nth_prime n1::a4 = t::(l1@(nth_prime (S n1)::a5))); + destruct H12; + change in H11 with (sorted_gt (nth_prime n1::l1@(nth_prime (S n1)::a5))); + lapply (sorted_to_minimum ? ? ? H11 (nth_prime (S n1))) + [unfold in Hletin2;elim (le_to_not_lt ? ? (lt_to_le ? ? Hletin2)); + apply increasing_nth_prime + |apply (ex_intro ? ? l1);apply (ex_intro ? ? a5);reflexivity]] + |intros 5;elim l1 + [change in H12 with (t::(l@(nth_prime n1::a4)) = nth_prime (S n1)::a5); + destruct H12;cut (l = []) + [rewrite > Hcut2;reflexivity + |change in H11 with (sorted_gt (nth_prime (S n1)::(l@(nth_prime n1::a4)))); + generalize in match H11;generalize in match H8;cases l;intros + [reflexivity + |lapply (sorted_cons_to_sorted ? ? ? H13); + lapply (sorted_to_minimum ? ? ? H13 n2) + [simplify in Hletin2;lapply (sorted_to_minimum ? ? ? Hletin2 (nth_prime n1)) + [unfold in Hletin3;unfold in Hletin4; + elim (lt_nth_prime_to_not_prime ? ? Hletin4 Hletin3); + apply H12; + apply (ex_intro ? ? [nth_prime (S n1)]); + apply (ex_intro ? ? (l2@(nth_prime n1::a4))); + reflexivity + |apply (ex_intro ? ? l2);apply (ex_intro ? ? a4);reflexivity] + |simplify;apply in_list_head]]] + |change in H13 with (t::(l@(nth_prime n1::a4)) = t1::(l2@(nth_prime (S n1)::a5))); + destruct H13;apply (H7 l2 ? ? Hcut3) + [intros;apply H8;simplify;apply in_list_cons; + assumption + |simplify in H12; + apply (sorted_cons_to_sorted ? ? ? H12)]]]] + rewrite > Hcut2 in ⊢ (? ? ? (? ? ? (? ? ? %))); + apply H10 + |apply (trans_le ? ? ? Hletin);apply lt_to_le; + apply (trans_le ? ? ? H5 Hcut) + |apply prime_nth_prime] + |rewrite > H3;assumption + |apply prime_nth_prime]] + |apply le_times_r;assumption] + |apply prime_nth_prime + |rewrite < H3;apply increasing_nth_prime]]] + |assumption] +qed. *) lemma not_not_bertrand_to_bertrand1: \forall n. \lnot (not_bertrand n) \to \forall x. n \le x \to x \le 2*n \to @@ -585,7 +610,7 @@ qed. theorem le_B_split1_teta:\forall n.18 \le n \to not_bertrand n \to B_split1 (2*n) \le teta (2 * n / 3). -intros.unfold B_split1.unfold teta. +intros. unfold B_split1.unfold teta. apply (trans_le ? (pi_p (S (2*n)) primeb (λp:nat.(p)\sup(bool_to_nat (eqb (k (2*n) p) 1))))) [apply le_pi_p.intros. apply le_exp @@ -1022,7 +1047,7 @@ rewrite > log_exp ] qed. -theorem le_to_bertrand: +theorem le_to_bertrand2: \forall n. (exp 2 8) \le n \to bertrand n. intros. apply not_not_bertrand_to_bertrand.unfold.intro. @@ -1047,6 +1072,13 @@ absurd (2*n / 3 \le (sqrt(2*n)/2)*S(log 2 (2*n))) ] qed. +theorem bertrand_n : +\forall n. O < n \to bertrand n. +intros;elim (decidable_le n 256) + [apply le_to_bertrand;assumption + |apply le_to_bertrand2;apply lt_to_le;apply not_le_to_lt;apply H1] +qed. + (* test theorem mod_exp: eqb (mod (exp 2 8) 13) O = false. reflexivity.