X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fnat%2Fchebyshev.ma;h=a7b473ec031b98325e41873374eb1355d9b2f3ba;hb=cb89a1eebdd620d7e1c593fa279e74d4c715b8bf;hp=f980d4458670d2911d0f42b64c8e23a634c9329c;hpb=6db38e3d8e4083765f2fce40c7845c9827b9afd0;p=helm.git diff --git a/helm/software/matita/library/nat/chebyshev.ma b/helm/software/matita/library/nat/chebyshev.ma index f980d4458..a7b473ec0 100644 --- a/helm/software/matita/library/nat/chebyshev.ma +++ b/helm/software/matita/library/nat/chebyshev.ma @@ -988,7 +988,7 @@ rewrite > eq_fact_B ] qed. -theorem le_B_exp: \forall n.S O < n \to +theorem lt_SO_to_le_B_exp: \forall n.S O < n \to B ((S(S O))*n) \le exp (S(S O)) ((S(S O))*n). intros. apply (le_times_to_le (exp (fact n) (S(S O)))) @@ -1004,171 +1004,471 @@ apply (le_times_to_le (exp (fact n) (S(S O)))) ] qed. -theorem le_A_SSO_A: \forall n. -A((S(S O))*n) \le - pi_p (S ((S(S O))*n)) primeb (λp:nat.p)*A n. -unfold A.intros. -cut (pi_p (S n) primeb (λp:nat.(exp p (log p n))) = pi_p (S ((S(S O))*n)) primeb (λp:nat.(p)\sup(log p n))) +theorem le_B_exp: \forall n. +B ((S(S O))*n) \le exp (S(S O)) ((S(S O))*n). +intro.cases n + [apply le_n + |cases n1 + [simplify.apply le_S.apply le_S.apply le_n + |apply lt_SO_to_le_B_exp. + apply le_S_S.apply lt_O_S. + ] + ] +qed. + +theorem eq_A_SSO_n: \forall n.O < n \to +A((S(S O))*n) = + pi_p (S ((S(S O))*n)) primeb + (\lambda p.(pi_p (log p ((S(S O))*n) ) + (\lambda i.true) (\lambda i.(exp p (bool_to_nat (leb (S n) (exp p (S i)))))))) + *A n. +intro. +rewrite > eq_A_A'.rewrite > eq_A_A'. +unfold A'.intros. +cut ( + pi_p (S n) primeb (λp:nat.pi_p (log p n) (λi:nat.true) (λi:nat.p)) + = pi_p (S ((S(S O))*n)) primeb + (λp:nat.pi_p (log p ((S(S O))*n)) (λi:nat.true) (λi:nat.(p)\sup(bool_to_nat (\lnot (leb (S n) (exp p (S i)))))))) [rewrite > Hcut. rewrite < times_pi_p. - apply le_pi_p.intros. - lapply (prime_to_lt_SO ? (primeb_true_to_prime ? H1)) as H2. - change with (i\sup(log i ((S(S O))*n))≤i\sup(S(log i n))). - apply le_exp - [apply lt_to_le.assumption - |apply (trans_le ? (log i (i*n))) - [apply le_log - [assumption - |apply not_le_to_lt.intro. - apply (lt_to_not_le ? ? H). - apply (trans_le ? (S O)) - [apply le_S_S.assumption - |apply lt_to_le.assumption - ] - |apply le_times_l. - assumption + apply eq_pi_p1;intros + [reflexivity + |rewrite < times_pi_p. + apply eq_pi_p;intros + [reflexivity + |apply (bool_elim ? (leb (S n) (exp x (S x1))));intro + [simplify.rewrite < times_n_SO.apply times_n_SO + |simplify.rewrite < plus_n_O.apply times_n_SO ] - |rewrite > exp_n_SO in ⊢ (? (? ? (? % ?)) ?). - rewrite > log_exp - [apply le_n - |assumption - |apply not_le_to_lt.intro. - apply (lt_to_not_le ? ? H). - apply (le_n_O_elim ? H3). - apply lt_to_le. - assumption - ] ] ] - |apply sym_eq. - apply or_false_eq_SO_to_eq_pi_p - [apply le_S_S. - apply le_times_n. - apply lt_O_S - |intros.right. - change with (exp i (log i n) = (exp i O)). - apply eq_f. - apply antisymmetric_le - [cut (O < n) - [apply le_S_S_to_le. - apply (lt_exp_to_lt i) - [apply (le_to_lt_to_lt ? n);assumption - |apply (le_to_lt_to_lt ? n) - [apply le_exp_log. + |apply (trans_eq ? ? (pi_p (S n) primeb + (\lambda p:nat.pi_p (log p n) (\lambda i:nat.true) (\lambda i:nat.(p)\sup(bool_to_nat (¬leb (S n) (exp p (S i)))))))) + [apply eq_pi_p1;intros + [reflexivity + |apply eq_pi_p1;intros + [reflexivity + |rewrite > lt_to_leb_false + [simplify.apply times_n_SO + |apply le_S_S. + apply (trans_le ? (exp x (log x n))) + [apply le_exp + [apply prime_to_lt_O. + apply primeb_true_to_prime. + assumption + |assumption + ] + |apply le_exp_log. assumption - |rewrite < exp_n_SO. + ] + ] + ] + ] + |apply (trans_eq ? ? + (pi_p (S ((S(S O))*n)) primeb + (λp:nat.pi_p (log p n) (λi:nat.true) + (λi:nat.(p)\sup(bool_to_nat (¬leb (S n) ((p)\sup(S i)))))))) + [apply sym_eq. + apply or_false_eq_SO_to_eq_pi_p + [apply le_S_S. + simplify. + apply le_plus_n_r + |intros.right. + rewrite > lt_to_log_O + [reflexivity + |assumption + |assumption + ] + ] + |apply eq_pi_p1;intros + [reflexivity + |apply sym_eq. + apply or_false_eq_SO_to_eq_pi_p + [apply le_log + [apply prime_to_lt_SO. + apply primeb_true_to_prime. assumption + |assumption + |simplify. + apply le_plus_n_r + ] + |intros.right. + rewrite > le_to_leb_true + [simplify.reflexivity + |apply (lt_to_le_to_lt ? (exp x (S (log x n)))) + [apply lt_exp_log. + apply prime_to_lt_SO. + apply primeb_true_to_prime. + assumption + |apply le_exp + [apply prime_to_lt_O. + apply primeb_true_to_prime. + assumption + |apply le_S_S.assumption + ] + ] ] ] - |apply not_le_to_lt.intro. - apply (lt_to_not_le ? ? H1). - generalize in match H. - apply (le_n_O_elim ? H2). - intro.assumption ] - |apply le_O_n ] ] ] qed. - -(* so far so good - -theorem le_A_BA: \forall n. + +theorem le_A_BA1: \forall n. O < n \to A((S(S O))*n) \le B((S(S O))*n)*A n. -(* - [simplify.reflexivity - |rewrite > times_SSO. - rewrite > times_SSO. - unfold A. -apply (trans_le ? ((pi_p (S ((S(S O))*n)) primeb (λp:nat.p))*A n)) - [apply le_A_SSO_A - |apply le_times_l. +intros. +rewrite > eq_A_SSO_n + [apply le_times_l. unfold B. apply le_pi_p.intros. -*) -intro.unfold A.unfold B. -cut (pi_p (S n) primeb (λp:nat.(exp p (log p n))) = pi_p (S ((S(S O))*n)) primeb (λp:nat.(p)\sup(log p n))) - [rewrite > Hcut. - rewrite < times_pi_p. apply le_pi_p.intros. - apply le_trans i. - - - change with (i\sup(log i ((S(S O))*n))≤i\sup(S(log i n))). apply le_exp [apply prime_to_lt_O. apply primeb_true_to_prime. assumption - |apply (trans_le ? (log i (i*n))) - [apply le_log - [apply prime_to_lt_SO. - apply primeb_true_to_prime. - assumption - |apply not_le_to_lt.intro. - apply (lt_to_not_le ? ? H). - apply (trans_le ? (S O)) - [apply le_S_S.assumption - |apply prime_to_lt_O. + |apply (bool_elim ? (leb (S n) (exp i (S i1))));intro + [simplify in ⊢ (? % ?). + cut ((S(S O))*n/i\sup(S i1) = S O) + [rewrite > Hcut.apply le_n + |apply (div_mod_spec_to_eq + ((S(S O))*n) (exp i (S i1)) + ? (mod ((S(S O))*n) (exp i (S i1))) + ? (minus ((S(S O))*n) (exp i (S i1))) ) + [apply div_mod_spec_div_mod. + apply lt_O_exp. + apply prime_to_lt_O. apply primeb_true_to_prime. - assumption - ] - |apply le_times_l. - apply prime_to_lt_SO. - apply primeb_true_to_prime. - assumption + assumption + |cut (i\sup(S i1)≤(S(S O))*n) + [apply div_mod_spec_intro + [alias id "lt_plus_to_lt_minus" = "cic:/matita/nat/map_iter_p.ma/lt_plus_to_lt_minus.con". + apply lt_plus_to_lt_minus + [assumption + |simplify in ⊢ (? % ?). + rewrite < plus_n_O. + apply lt_plus + [apply leb_true_to_le.assumption + |apply leb_true_to_le.assumption + ] + ] + |rewrite > sym_plus. + rewrite > sym_times in ⊢ (? ? ? (? ? %)). + rewrite < times_n_SO. + apply plus_minus_m_m. + assumption + ] + |apply (trans_le ? (exp i (log i ((S(S O))*n)))) + [apply le_exp + [apply prime_to_lt_O. + apply primeb_true_to_prime. + assumption + |assumption + ] + |apply le_exp_log. + rewrite > (times_n_O O) in ⊢ (? % ?). + apply lt_times + [apply lt_O_S + |assumption + ] + ] + ] + ] ] - |rewrite > exp_n_SO in ⊢ (? (? ? (? % ?)) ?). - rewrite > log_exp - [apply le_n - |apply prime_to_lt_SO. - apply primeb_true_to_prime. + |apply le_O_n + ] + ] + |assumption + ] +qed. + +theorem le_A_BA: \forall n. A((S(S O))*n) \le B((S(S O))*n)*A n. +intros.cases n + [apply le_n + |apply le_A_BA1.apply lt_O_S + ] +qed. + +theorem le_A_exp: \forall n. +A((S(S O))*n) \le (exp (S(S O)) ((S(S O)*n)))*A n. +intro. +apply (trans_le ? (B((S(S O))*n)*A n)) + [apply le_A_BA + |apply le_times_l. + apply le_B_exp + ] +qed. + +theorem le_A_exp1: \forall n. +A(exp (S(S O)) n) \le (exp (S(S O)) ((S(S O))*(exp (S(S O)) n))). +intro.elim n + [simplify.apply le_S_S.apply le_O_n + |change with (A ((S(S O))*((S(S O)))\sup n1)≤ ((S(S O)))\sup((S(S O))*((S(S O))\sup(S n1)))). + apply (trans_le ? ((exp (S(S O)) ((S(S O)*(exp (S(S O)) n1))))*A (exp (S(S O)) n1))) + [apply le_A_exp + |apply (trans_le ? ((S(S O))\sup((S(S O))*((S(S O)))\sup(n1))*(S(S O))\sup((S(S O))*((S(S O)))\sup(n1)))) + [apply le_times_r. + assumption + |rewrite < exp_plus_times. + simplify.rewrite < plus_n_O in ⊢ (? ? (? ? (? ? %))). + apply le_n + ] + ] + ] +qed. + +theorem monotonic_A: monotonic nat le A. +unfold.intros. +elim H + [apply le_n + |apply (trans_le ? (A n1)) + [assumption + |unfold A. + cut (pi_p (S n1) primeb (λp:nat.(p)\sup(log p n1)) + ≤pi_p (S n1) primeb (λp:nat.(p)\sup(log p (S n1)))) + [apply (bool_elim ? (primeb (S n1)));intro + [rewrite > (true_to_pi_p_Sn ? ? ? H3). + rewrite > times_n_SO in ⊢ (? % ?). + rewrite > sym_times. + apply le_times + [apply lt_O_exp.apply lt_O_S + |assumption + ] + |rewrite > (false_to_pi_p_Sn ? ? ? H3). assumption - |apply not_le_to_lt.intro. - apply (lt_to_not_le ? ? H). - apply (le_n_O_elim ? H2). - apply prime_to_lt_O. + ] + |apply le_pi_p.intros. + apply le_exp + [apply prime_to_lt_O. apply primeb_true_to_prime. assumption - ] - ] - ] - |apply sym_eq. - apply or_false_eq_SO_to_eq_pi_p - [apply le_S_S. - apply le_times_n. - apply lt_O_S - |intros.right. - change with (exp i (log i n) = (exp i O)). - apply eq_f. - apply antisymmetric_le - [cut (O < n) - [apply le_S_S_to_le. - apply (lt_exp_to_lt i) - [apply (le_to_lt_to_lt ? n);assumption - |apply (le_to_lt_to_lt ? n) - [apply le_exp_log. + |apply le_log + [apply prime_to_lt_SO. + apply primeb_true_to_prime. + assumption + |apply (lt_to_le_to_lt ? i) + [apply prime_to_lt_O. + apply primeb_true_to_prime. assumption - |rewrite < exp_n_SO. + |apply le_S_S_to_le. assumption ] + |apply le_S.apply le_n + ] + ] + ] + ] + ] +qed. + +theorem le_A_exp2: \forall n. O < n \to +A(n) \le (exp (S(S O)) ((S(S O)) * (S(S O)) * n)). +intros. +apply (trans_le ? (A (exp (S(S O)) (S(log (S(S O)) n))))) + [apply monotonic_A. + apply lt_to_le. + apply lt_exp_log. + apply le_n + |apply (trans_le ? ((exp (S(S O)) ((S(S O))*(exp (S(S O)) (S(log (S(S O)) n))))))) + [apply le_A_exp1 + |apply le_exp + [apply lt_O_S + |rewrite > assoc_times.apply le_times_r. + change with ((S(S O))*((S(S O))\sup(log (S(S O)) n))≤(S(S O))*n). + apply le_times_r. + apply le_exp_log. + assumption + ] + ] + ] +qed. + +(* example *) +theorem A_SO: A (S O) = S O. +reflexivity. +qed. + +theorem A_SSO: A (S(S O)) = S (S O). +reflexivity. +qed. + +theorem A_SSSO: A (S(S(S O))) = S(S(S(S(S(S O))))). +reflexivity. +qed. + +theorem A_SSSSO: A (S(S(S(S O)))) = S(S(S(S(S(S(S(S(S(S(S(S O))))))))))). +reflexivity. +qed. + +(* da spostare *) +theorem or_eq_eq_S: \forall n.\exists m. +n = (S(S O))*m \lor n = S ((S(S O))*m). +intro.elim n + [apply (ex_intro ? ? O). + left.reflexivity + |elim H.elim H1 + [apply (ex_intro ? ? a). + right.apply eq_f.assumption + |apply (ex_intro ? ? (S a)). + left.rewrite > H2. + apply sym_eq. + apply times_SSO + ] + ] +qed. + +theorem times_exp: +\forall n,m,p. exp n p * exp m p = exp (n*m) p. +intros.elim p + [simplify.reflexivity + |simplify. + rewrite > assoc_times. + rewrite < assoc_times in ⊢ (? ? (? ? %) ?). + rewrite < sym_times in ⊢ (? ? (? ? (? % ?)) ?). + rewrite > assoc_times in ⊢ (? ? (? ? %) ?). + rewrite < assoc_times. + rewrite < H. + reflexivity + ] +qed. + +theorem monotonic_exp1: \forall n. +monotonic nat le (\lambda x.(exp x n)). +unfold monotonic. intros. +simplify.elim n + [apply le_n + |simplify. + apply le_times;assumption + ] +qed. + +(* a better result *) +theorem le_A_exp3: \forall n. S O < n \to +A(n) \le exp (pred n) (S(S O))*(exp (S(S O)) ((S(S O)) * n)). +intro. +apply (nat_elim1 n). +intros. +elim (or_eq_eq_S m). +elim H2 + [elim (le_to_or_lt_eq (S O) a) + [rewrite > H3 in ⊢ (? % ?). + apply (trans_le ? ((exp (S(S O)) ((S(S O)*a)))*A a)) + [apply le_A_exp + |apply (trans_le ? (((S(S O)))\sup((S(S O))*a)* + ((pred a)\sup((S(S O)))*((S(S O)))\sup((S(S O))*a)))) + [apply le_times_r. + apply H + [rewrite > H3. + rewrite > times_n_SO in ⊢ (? % ?). + rewrite > sym_times. + apply lt_times_l1 + [apply lt_to_le.assumption + |apply le_n + ] + |assumption + ] + |rewrite > sym_times. + rewrite > assoc_times. + rewrite < exp_plus_times. + apply (trans_le ? + (pred a\sup((S(S O)))*(S(S O))\sup(S(S O))*(S(S O))\sup((S(S O))*m))) + [rewrite > assoc_times. + apply le_times_r. + rewrite < exp_plus_times. + apply le_exp + [apply lt_O_S + |rewrite < H3. + simplify. + rewrite < plus_n_O. + apply le_S.apply le_S. + apply le_n + ] + |apply le_times_l. + rewrite > times_exp. + apply monotonic_exp1. + rewrite > H3. + rewrite > sym_times. + cases a + [apply le_n + |simplify. + rewrite < plus_n_Sm. + apply le_S. + apply le_n + ] ] - |apply not_le_to_lt.intro. - apply (lt_to_not_le ? ? H1). - generalize in match H. - apply (le_n_O_elim ? H2). - intro.assumption ] + ] + |rewrite < H4 in H3. + simplify in H3. + rewrite > H3. + simplify. + apply le_S_S.apply le_S_S.apply le_O_n + |apply not_lt_to_le.intro. + apply (lt_to_not_le ? ? H1). + rewrite > H3. + apply (le_n_O_elim a) + [apply le_S_S_to_le.assumption |apply le_O_n ] ] + |elim (le_to_or_lt_eq O a (le_O_n ?)) + [apply (trans_le ? (A ((S(S O))*(S a)))) + [apply monotonic_A. + rewrite > H3. + rewrite > times_SSO. + apply le_n_Sn + |apply (trans_le ? ((exp (S(S O)) ((S(S O)*(S a))))*A (S a))) + [apply le_A_exp + |apply (trans_le ? (((S(S O)))\sup((S(S O))*S a)* + (a\sup((S(S O)))*((S(S O)))\sup((S(S O))*(S a))))) + [apply le_times_r. + apply H + [rewrite > H3. + apply le_S_S. + simplify. + rewrite > plus_n_SO. + apply le_plus_r. + rewrite < plus_n_O. + assumption + |apply le_S_S.assumption + ] + |rewrite > sym_times. + rewrite > assoc_times. + rewrite < exp_plus_times. + apply (trans_le ? + (a\sup((S(S O)))*(S(S O))\sup(S(S O))*(S(S O))\sup((S(S O))*m))) + [rewrite > assoc_times. + apply le_times_r. + rewrite < exp_plus_times. + apply le_exp + [apply lt_O_S + |rewrite > times_SSO. + rewrite < H3. + simplify. + rewrite < plus_n_Sm. + rewrite < plus_n_O. + apply le_n + ] + |apply le_times_l. + rewrite > times_exp. + apply monotonic_exp1. + rewrite > H3. + rewrite > sym_times. + apply le_n + ] + ] + ] + ] + |rewrite < H4 in H3.simplify in H3. + apply False_ind. + apply (lt_to_not_le ? ? H1). + rewrite > H3. + apply le_n + ] ] qed. -unfold A.unfold B. -rewrite > eq_A_A'.rewrite > eq_A_A'. -unfold A'.unfold B. (* da spostare *) theorem times_exp: \forall n,m,p.exp n p * exp m p = exp (n*m) p. @@ -1678,3 +1978,4 @@ elim (lt_O_to_or_eq_S m) a*log a-a+k*log a +*) \ No newline at end of file