X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fnat%2Ffactorization.ma;h=8c50d1d7db1e5612e160776b39a59e55ab21fece;hb=10f29fdd78ee089a9a94446207b543d33d6c851c;hp=37a7045924540be5f718043bc79eba2c3c742842;hpb=6423f1b6e3056883016598e454c55cab1004dfd2;p=helm.git diff --git a/helm/software/matita/library/nat/factorization.ma b/helm/software/matita/library/nat/factorization.ma index 37a704592..8c50d1d7d 100644 --- a/helm/software/matita/library/nat/factorization.ma +++ b/helm/software/matita/library/nat/factorization.ma @@ -15,14 +15,32 @@ set "baseuri" "cic:/matita/nat/factorization". include "nat/ord.ma". -include "nat/gcd.ma". -include "nat/nth_prime.ma". (* the following factorization algorithm looks for the largest prime factor. *) definition max_prime_factor \def \lambda n:nat. (max n (\lambda p:nat.eqb (n \mod (nth_prime p)) O)). +theorem lt_SO_max_prime: \forall m. S O < m \to +S O < max m (λi:nat.primeb i∧divides_b i m). +intros. +apply (lt_to_le_to_lt ? (smallest_factor m)) + [apply lt_SO_smallest_factor.assumption + |apply f_m_to_le_max + [apply le_smallest_factor_n + |apply true_to_true_to_andb_true + [apply prime_to_primeb_true. + apply prime_smallest_factor_n. + assumption + |apply divides_to_divides_b_true + [apply lt_O_smallest_factor.apply lt_to_le.assumption + |apply divides_smallest_factor_n. + apply lt_to_le.assumption + ] + ] + ] + ] +qed. (* max_prime_factor is indeed a factor *) theorem divides_max_prime_factor_n: \forall n:nat. (S O) < n @@ -40,19 +58,18 @@ cut (\exists i. nth_prime i = smallest_factor n); | rewrite > H1; apply le_smallest_factor_n; ] | rewrite > H1; - (*CSC: simplify here does something nasty! *) change with (divides_b (smallest_factor n) n = true); apply divides_to_divides_b_true; [ apply (trans_lt ? (S O)); [ unfold lt; apply le_n; | apply lt_SO_smallest_factor; assumption; ] - | letin x \def le.auto new. + | letin x \def le.autobatch new. (* apply divides_smallest_factor_n; apply (trans_lt ? (S O)); [ unfold lt; apply le_n; | assumption; ] *) ] ] - | auto. + | autobatch. (* apply prime_to_nth_prime; apply prime_smallest_factor_n; @@ -70,8 +87,8 @@ apply divides_to_divides_b_true. cut (prime (nth_prime (max_prime_factor n))). apply lt_O_nth_prime_n.apply prime_nth_prime. cut (nth_prime (max_prime_factor n) \divides n). -auto. -auto. +autobatch. +autobatch. (* [ apply (transitive_divides ? n); [ apply divides_max_prime_factor_n. @@ -101,6 +118,19 @@ elim (le_to_or_lt_eq ? ? H) ] qed. +theorem max_prime_factor_to_not_p_ord_O : \forall n,p,r. + (S O) < n \to + p = max_prime_factor n \to + p_ord n (nth_prime p) \neq pair nat nat O r. +intros.unfold Not.intro. +apply (p_ord_O_to_not_divides ? ? ? ? H2) + [apply (trans_lt ? (S O))[apply lt_O_S|assumption] + |rewrite > H1. + apply divides_max_prime_factor_n. + assumption + ] +qed. + theorem p_ord_to_lt_max_prime_factor: \forall n,p,q,r. O < n \to p = max_prime_factor n \to (pair nat nat q r) = p_ord n (nth_prime p) \to @@ -116,7 +146,7 @@ apply divides_max_prime_factor_n. assumption.unfold Not. intro. cut (r \mod (nth_prime (max_prime_factor n)) \neq O); - [unfold Not in Hcut1.auto new. + [unfold Not in Hcut1.autobatch new. (* apply Hcut1.apply divides_to_mod_O; [ apply lt_O_nth_prime_n. @@ -125,7 +155,7 @@ cut (r \mod (nth_prime (max_prime_factor n)) \neq O); *) |letin z \def le. cut(pair nat nat q r=p_ord_aux n n (nth_prime (max_prime_factor n))); - [2: rewrite < H1.assumption.|letin x \def le.auto width = 4 new] + [2: rewrite < H1.assumption.|letin x \def le.autobatch width = 4 depth = 2] (* CERCA COME MAI le_n non lo applica se lo trova come Const e non Rel *) ]. (* @@ -164,6 +194,33 @@ assumption.apply sym_eq.assumption.assumption.assumption. apply (le_to_or_lt_eq ? p H1). qed. +lemma lt_max_prime_factor_to_not_divides: \forall n,p:nat. +O < n \to n=S O \lor max_prime_factor n < p \to +(nth_prime p \ndivides n). +intros.unfold Not.intro. +elim H1 + [rewrite > H3 in H2. + apply (le_to_not_lt (nth_prime p) (S O)) + [apply divides_to_le[apply le_n|assumption] + |apply lt_SO_nth_prime_n + ] + |apply (not_le_Sn_n p). + change with (p < p). + apply (le_to_lt_to_lt ? ? ? ? H3). + unfold max_prime_factor. + apply f_m_to_le_max + [apply (trans_le ? (nth_prime p)) + [apply lt_to_le. + apply lt_n_nth_prime_n + |apply divides_to_le;assumption + ] + |apply eq_to_eqb_true. + apply divides_to_mod_O + [apply lt_O_nth_prime_n|assumption] + ] + ] +qed. + (* datatypes and functions *) inductive nat_fact : Set \def @@ -316,7 +373,7 @@ theorem defactorize_factorize: \forall n:nat.defactorize (factorize n) = n. intro. apply (nat_case n).reflexivity. intro.apply (nat_case m).reflexivity. -intro.(*CSC: simplify here does something really nasty *) +intro. change with (let p \def (max (S(S m1)) (\lambda p:nat.eqb ((S(S m1)) \mod (nth_prime p)) O)) in defactorize (match p_ord (S(S m1)) (nth_prime p) with @@ -337,7 +394,6 @@ simplify. cut ((S(S m1)) = (nth_prime p) \sup q *r). cut (O defactorize_aux_factorize_aux. -(*CSC: simplify here does something really nasty *) change with (r*(nth_prime p) \sup (S (pred q)) = (S(S m1))). cut ((S (pred q)) = q). rewrite > Hcut2. @@ -355,7 +411,6 @@ apply (divides_max_prime_factor_n (S (S m1))). unfold lt.apply le_S_S.apply le_S_S. apply le_O_n. cut ((S(S m1)) = r). rewrite > Hcut3 in \vdash (? (? ? %)). -(*CSC: simplify here does something really nasty *) change with (nth_prime p \divides r \to False). intro. apply (p_ord_aux_to_not_mod_O (S(S m1)) (S(S m1)) (nth_prime p) q r). @@ -399,7 +454,6 @@ apply (not_eq_O_S (S m1)). rewrite > Hcut.rewrite < H1.rewrite < times_n_O.reflexivity. apply le_to_or_lt_eq.apply le_O_n. (* prova del cut *) -goal 20. apply (p_ord_aux_to_exp (S(S m1))). apply lt_O_nth_prime_n. assumption. @@ -433,28 +487,86 @@ apply (witness ? ? (n2* (nth_prime i) \sup n)). reflexivity. qed. -theorem divides_exp_to_divides: -\forall p,n,m:nat. prime p \to -p \divides n \sup m \to p \divides n. -intros 3.elim m.simplify in H1. -apply (transitive_divides p (S O)).assumption. -apply divides_SO_n. -cut (p \divides n \lor p \divides n \sup n1). -elim Hcut.assumption. -apply H.assumption.assumption. -apply divides_times_to_divides.assumption. -exact H2. -qed. - -theorem divides_exp_to_eq: -\forall p,q,m:nat. prime p \to prime q \to -p \divides q \sup m \to p = q. +lemma eq_p_max: \forall n,p,r:nat. O < n \to +O < r \to +r = (S O) \lor (max r (\lambda p:nat.eqb (r \mod (nth_prime p)) O)) < p \to +p = max_prime_factor (r*(nth_prime p)\sup n). intros. -unfold prime in H1. -elim H1.apply H4. -apply (divides_exp_to_divides p q m). -assumption.assumption. -unfold prime in H.elim H.assumption. +apply sym_eq. +unfold max_prime_factor. +apply max_spec_to_max. +split + [split + [rewrite > times_n_SO in \vdash (? % ?). + rewrite > sym_times. + apply le_times + [assumption + |apply lt_to_le. + apply (lt_to_le_to_lt ? (nth_prime p)) + [apply lt_n_nth_prime_n + |rewrite > exp_n_SO in \vdash (? % ?). + apply le_exp + [apply lt_O_nth_prime_n + |assumption + ] + ] + ] + |apply eq_to_eqb_true. + apply divides_to_mod_O + [apply lt_O_nth_prime_n + |apply (lt_O_n_elim ? H). + intro. + apply (witness ? ? (r*(nth_prime p \sup m))). + rewrite < assoc_times. + rewrite < sym_times in \vdash (? ? ? (? % ?)). + rewrite > exp_n_SO in \vdash (? ? ? (? (? ? %) ?)). + rewrite > assoc_times. + rewrite < exp_plus_times. + reflexivity + ] + ] + |intros. + apply not_eq_to_eqb_false. + unfold Not.intro. + lapply (mod_O_to_divides ? ? ? H5) + [apply lt_O_nth_prime_n + |cut (Not (divides (nth_prime i) ((nth_prime p)\sup n))) + [elim H2 + [rewrite > H6 in Hletin. + simplify in Hletin. + rewrite < plus_n_O in Hletin. + apply Hcut.assumption + |elim (divides_times_to_divides ? ? ? ? Hletin) + [apply (lt_to_not_le ? ? H3). + apply lt_to_le. + apply (le_to_lt_to_lt ? ? ? ? H6). + apply f_m_to_le_max + [apply (trans_le ? (nth_prime i)) + [apply lt_to_le. + apply lt_n_nth_prime_n + |apply divides_to_le[assumption|assumption] + ] + |apply eq_to_eqb_true. + apply divides_to_mod_O + [apply lt_O_nth_prime_n|assumption] + ] + |apply prime_nth_prime + |apply Hcut.assumption + ] + ] + |unfold Not.intro. + apply (lt_to_not_eq ? ? H3). + apply sym_eq. + elim (prime_nth_prime p). + apply injective_nth_prime. + apply H8 + [apply (divides_exp_to_divides ? ? ? ? H6). + apply prime_nth_prime. + |apply lt_SO_nth_prime_n + ] + ] + ] + ] qed. theorem not_divides_defactorize_aux: \forall f:nat_fact. \forall i,j:nat. @@ -641,7 +753,7 @@ exact H1. qed. theorem factorize_defactorize: -\forall f,g: nat_fact_all. factorize (defactorize f) = f. +\forall f: nat_fact_all. factorize (defactorize f) = f. intros. apply injective_defactorize. apply defactorize_factorize.