X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fnat%2Fgcd.ma;h=3db29f622fb95a5e096cb46744928c97bcef9f39;hb=c445ba5534cccde19016c92660ab52777af221c0;hp=66bc6f8651565e43880cd73bdd222280cca9121f;hpb=422a978421fc344c7334f1444b275f1c1fd8fbb0;p=helm.git diff --git a/helm/software/matita/library/nat/gcd.ma b/helm/software/matita/library/nat/gcd.ma index 66bc6f865..3db29f622 100644 --- a/helm/software/matita/library/nat/gcd.ma +++ b/helm/software/matita/library/nat/gcd.ma @@ -12,9 +12,8 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/nat/gcd". - include "nat/primes.ma". +include "nat/lt_arith.ma". let rec gcd_aux p m n: nat \def match divides_b n m with @@ -100,7 +99,6 @@ qed. theorem divides_gcd_nm: \forall n,m. gcd n m \divides m \land gcd n m \divides n. intros. -(*CSC: simplify simplifies too much because of a redex in gcd *) change with (match leb n m with [ true \Rightarrow @@ -163,42 +161,109 @@ intros. exact (proj1 ? ? (divides_gcd_nm n m)). qed. + +theorem divides_times_gcd_aux: \forall p,m,n,d,c. +O \lt c \to O < n \to n \le m \to n \le p \to +d \divides (c*m) \to d \divides (c*n) \to d \divides c*gcd_aux p m n. +intro. +elim p +[ absurd (O < n) + [ assumption + | apply le_to_not_lt. + assumption + ] +| simplify. + cut (n1 \divides m \lor n1 \ndivides m) + [ elim Hcut + [ rewrite > divides_to_divides_b_true + [ simplify. + assumption + | assumption + | assumption + ] + | rewrite > not_divides_to_divides_b_false + [ simplify. + apply H + [ assumption + | cut (O \lt m \mod n1 \lor O = m \mod n1) + [ elim Hcut1 + [ assumption + | absurd (n1 \divides m) + [ apply mod_O_to_divides + [ assumption + | apply sym_eq. + assumption + ] + | assumption + ] + ] + | apply le_to_or_lt_eq. + apply le_O_n + ] + | apply lt_to_le. + apply lt_mod_m_m. + assumption + | apply le_S_S_to_le. + apply (trans_le ? n1) + [ change with (m \mod n1 < n1). + apply lt_mod_m_m. + assumption + | assumption + ] + | assumption + | rewrite < times_mod + [ rewrite < (sym_times c m). + rewrite < (sym_times c n1). + apply divides_mod + [ rewrite > (S_pred c) + [ rewrite > (S_pred n1) + [ apply (lt_O_times_S_S) + | assumption + ] + | assumption + ] + | assumption + | assumption + ] + | assumption + | assumption + ] + ] + | assumption + | assumption + ] + ] + | apply (decidable_divides n1 m). + assumption + ] +] +qed. + +(*a particular case of the previous theorem (setting c=1)*) theorem divides_gcd_aux: \forall p,m,n,d. O < n \to n \le m \to n \le p \to d \divides m \to d \divides n \to d \divides gcd_aux p m n. -intro.elim p. -absurd (O < n).assumption.apply le_to_not_lt.assumption. -simplify. -cut (n1 \divides m \lor n1 \ndivides m). -elim Hcut. -rewrite > divides_to_divides_b_true. -simplify.assumption. -assumption.assumption. -rewrite > not_divides_to_divides_b_false. -simplify. -apply H. -cut (O \lt m \mod n1 \lor O = m \mod n1). -elim Hcut1.assumption. -absurd (n1 \divides m).apply mod_O_to_divides. -assumption.apply sym_eq.assumption.assumption. -apply le_to_or_lt_eq.apply le_O_n. -apply lt_to_le. -apply lt_mod_m_m.assumption. -apply le_S_S_to_le. -apply (trans_le ? n1). -change with (m \mod n1 < n1). -apply lt_mod_m_m.assumption.assumption. -assumption. -apply divides_mod.assumption.assumption.assumption. -assumption.assumption. -apply (decidable_divides n1 m).assumption. +intros. +rewrite > (times_n_SO (gcd_aux p m n)). +rewrite < (sym_times (S O)). +apply (divides_times_gcd_aux) +[ apply (lt_O_S O) +| assumption +| assumption +| assumption +| rewrite > (sym_times (S O)). + rewrite < (times_n_SO m). + assumption +| rewrite > (sym_times (S O)). + rewrite < (times_n_SO n). + assumption +] qed. -theorem divides_d_gcd: \forall m,n,d. -d \divides m \to d \divides n \to d \divides gcd n m. +theorem divides_d_times_gcd: \forall m,n,d,c. +O \lt c \to d \divides (c*m) \to d \divides (c*n) \to d \divides c*gcd n m. intros. -(*CSC: here simplify simplifies too much because of a redex in gcd *) change with -(d \divides +(d \divides c * match leb n m with [ true \Rightarrow match n with @@ -208,105 +273,178 @@ match leb n m with match m with [ O \Rightarrow n | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]). -apply (leb_elim n m). -apply (nat_case1 n).simplify.intros.assumption. -intros. -change with (d \divides gcd_aux (S m1) m (S m1)). -apply divides_gcd_aux. -unfold lt.apply le_S_S.apply le_O_n.assumption.apply le_n.assumption. -rewrite < H2.assumption. -apply (nat_case1 m).simplify.intros.assumption. +apply (leb_elim n m) +[ apply (nat_case1 n) + [ simplify. + intros. + assumption + | intros. + change with (d \divides c*gcd_aux (S m1) m (S m1)). + apply divides_times_gcd_aux + [ assumption + | unfold lt. + apply le_S_S. + apply le_O_n + | assumption + | apply (le_n (S m1)) + | assumption + | rewrite < H3. + assumption + ] + ] +| apply (nat_case1 m) + [ simplify. + intros. + assumption + | intros. + change with (d \divides c * gcd_aux (S m1) n (S m1)). + apply divides_times_gcd_aux + [ unfold lt. + change with (O \lt c). + assumption + | apply lt_O_S + | apply lt_to_le. + apply not_le_to_lt. + assumption + | apply (le_n (S m1)). + | assumption + | rewrite < H3. + assumption + ] + ] +] +qed. + +(*a particular case of the previous theorem (setting c=1)*) +theorem divides_d_gcd: \forall m,n,d. +d \divides m \to d \divides n \to d \divides gcd n m. intros. -change with (d \divides gcd_aux (S m1) n (S m1)). -apply divides_gcd_aux. -unfold lt.apply le_S_S.apply le_O_n. -apply lt_to_le.apply not_le_to_lt.assumption.apply le_n.assumption. -rewrite < H2.assumption. +rewrite > (times_n_SO (gcd n m)). +rewrite < (sym_times (S O)). +apply (divides_d_times_gcd) +[ apply (lt_O_S O) +| rewrite > (sym_times (S O)). + rewrite < (times_n_SO m). + assumption +| rewrite > (sym_times (S O)). + rewrite < (times_n_SO n). + assumption +] qed. theorem eq_minus_gcd_aux: \forall p,m,n.O < n \to n \le m \to n \le p \to \exists a,b. a*n - b*m = gcd_aux p m n \lor b*m - a*n = gcd_aux p m n. intro. -elim p. -absurd (O < n).assumption.apply le_to_not_lt.assumption. -cut (O < m). -cut (n1 \divides m \lor n1 \ndivides m). -simplify. -elim Hcut1. -rewrite > divides_to_divides_b_true. -simplify. -apply (ex_intro ? ? (S O)). -apply (ex_intro ? ? O). -left.simplify.rewrite < plus_n_O. -apply sym_eq.apply minus_n_O. -assumption.assumption. -rewrite > not_divides_to_divides_b_false. -change with -(\exists a,b. -a*n1 - b*m = gcd_aux n n1 (m \mod n1) -\lor -b*m - a*n1 = gcd_aux n n1 (m \mod n1)). -cut -(\exists a,b. -a*(m \mod n1) - b*n1= gcd_aux n n1 (m \mod n1) -\lor -b*n1 - a*(m \mod n1) = gcd_aux n n1 (m \mod n1)). -elim Hcut2.elim H5.elim H6. -(* first case *) -rewrite < H7. -apply (ex_intro ? ? (a1+a*(m / n1))). -apply (ex_intro ? ? a). -right. -rewrite < sym_plus. -rewrite < (sym_times n1). -rewrite > distr_times_plus. -rewrite > (sym_times n1). -rewrite > (sym_times n1). -rewrite > (div_mod m n1) in \vdash (? ? (? % ?) ?). -rewrite > assoc_times. -rewrite < sym_plus. -rewrite > distr_times_plus. -rewrite < eq_minus_minus_minus_plus. -rewrite < sym_plus. -rewrite < plus_minus. -rewrite < minus_n_n.reflexivity. -apply le_n. -assumption. -(* second case *) -rewrite < H7. -apply (ex_intro ? ? (a1+a*(m / n1))). -apply (ex_intro ? ? a). -left. -(* clear Hcut2.clear H5.clear H6.clear H. *) -rewrite > sym_times. -rewrite > distr_times_plus. -rewrite > sym_times. -rewrite > (sym_times n1). -rewrite > (div_mod m n1) in \vdash (? ? (? ? %) ?). -rewrite > distr_times_plus. -rewrite > assoc_times. -rewrite < eq_minus_minus_minus_plus. -rewrite < sym_plus. -rewrite < plus_minus. -rewrite < minus_n_n.reflexivity. -apply le_n. -assumption. -apply (H n1 (m \mod n1)). -cut (O \lt m \mod n1 \lor O = m \mod n1). -elim Hcut2.assumption. -absurd (n1 \divides m).apply mod_O_to_divides. -assumption. -symmetry.assumption.assumption. -apply le_to_or_lt_eq.apply le_O_n. -apply lt_to_le. -apply lt_mod_m_m.assumption. -apply le_S_S_to_le. -apply (trans_le ? n1). -change with (m \mod n1 < n1). -apply lt_mod_m_m. -assumption.assumption.assumption.assumption. -apply (decidable_divides n1 m).assumption. -apply (lt_to_le_to_lt ? n1).assumption.assumption. +elim p + [absurd (O < n) + [assumption + |apply le_to_not_lt.assumption + ] + |cut (O < m) + [cut (n1 \divides m \lor n1 \ndivides m) + [simplify. + elim Hcut1 + [rewrite > divides_to_divides_b_true + [simplify. + apply (ex_intro ? ? (S O)). + apply (ex_intro ? ? O). + left. + simplify. + rewrite < plus_n_O. + apply sym_eq. + apply minus_n_O + |assumption + |assumption + ] + |rewrite > not_divides_to_divides_b_false + [change with + (\exists a,b.a*n1 - b*m = gcd_aux n n1 (m \mod n1) + \lor b*m - a*n1 = gcd_aux n n1 (m \mod n1)). + cut + (\exists a,b.a*(m \mod n1) - b*n1= gcd_aux n n1 (m \mod n1) + \lor b*n1 - a*(m \mod n1) = gcd_aux n n1 (m \mod n1)) + [elim Hcut2.elim H5.elim H6 + [(* first case *) + rewrite < H7. + apply (ex_intro ? ? (a1+a*(m / n1))). + apply (ex_intro ? ? a). + right. + rewrite < sym_plus. + rewrite < (sym_times n1). + rewrite > distr_times_plus. + rewrite > (sym_times n1). + rewrite > (sym_times n1). + rewrite > (div_mod m n1) in \vdash (? ? (? % ?) ?) + [rewrite > assoc_times. + rewrite < sym_plus. + rewrite > distr_times_plus. + rewrite < eq_minus_minus_minus_plus. + rewrite < sym_plus. + rewrite < plus_minus + [rewrite < minus_n_n.reflexivity + |apply le_n + ] + |assumption + ] + |(* second case *) + rewrite < H7. + apply (ex_intro ? ? (a1+a*(m / n1))). + apply (ex_intro ? ? a). + left. + (* clear Hcut2.clear H5.clear H6.clear H. *) + rewrite > sym_times. + rewrite > distr_times_plus. + rewrite > sym_times. + rewrite > (sym_times n1). + rewrite > (div_mod m n1) in \vdash (? ? (? ? %) ?) + [rewrite > distr_times_plus. + rewrite > assoc_times. + rewrite < eq_minus_minus_minus_plus. + rewrite < sym_plus. + rewrite < plus_minus + [rewrite < minus_n_n.reflexivity + |apply le_n + ] + |assumption + ] + ] + |apply (H n1 (m \mod n1)) + [cut (O \lt m \mod n1 \lor O = m \mod n1) + [elim Hcut2 + [assumption + |absurd (n1 \divides m) + [apply mod_O_to_divides + [assumption + |symmetry.assumption + ] + |assumption + ] + ] + |apply le_to_or_lt_eq. + apply le_O_n + ] + |apply lt_to_le. + apply lt_mod_m_m. + assumption + |apply le_S_S_to_le. + apply (trans_le ? n1) + [change with (m \mod n1 < n1). + apply lt_mod_m_m. + assumption + |assumption + ] + ] + ] + |assumption + |assumption + ] + ] + |apply (decidable_divides n1 m). + assumption + ] + |apply (lt_to_le_to_lt ? n1);assumption + ] + ] qed. theorem eq_minus_gcd: @@ -384,8 +522,75 @@ rewrite < H4 in \vdash (? ? %).assumption. intros.unfold lt.apply le_S_S.apply le_O_n. qed. +theorem gcd_n_n: \forall n.gcd n n = n. +intro.elim n + [reflexivity + |apply le_to_le_to_eq + [apply divides_to_le + [apply lt_O_S + |apply divides_gcd_n + ] + |apply divides_to_le + [apply lt_O_gcd.apply lt_O_S + |apply divides_d_gcd + [apply divides_n_n|apply divides_n_n] + ] + ] + ] +qed. + +theorem gcd_SO_to_lt_O: \forall i,n. (S O) < n \to gcd i n = (S O) \to +O < i. +intros. +elim (le_to_or_lt_eq ? ? (le_O_n i)) + [assumption + |absurd ((gcd i n) = (S O)) + [assumption + |rewrite < H2. + simplify. + unfold.intro. + apply (lt_to_not_eq (S O) n H). + apply sym_eq.assumption + ] + ] +qed. + +theorem gcd_SO_to_lt_n: \forall i,n. (S O) < n \to i \le n \to gcd i n = (S O) \to +i < n. +intros. +elim (le_to_or_lt_eq ? ? H1) + [assumption + |absurd ((gcd i n) = (S O)) + [assumption + |rewrite > H3. + rewrite > gcd_n_n. + unfold.intro. + apply (lt_to_not_eq (S O) n H). + apply sym_eq.assumption + ] + ] +qed. + +theorem gcd_n_times_nm: \forall n,m. O < m \to gcd n (n*m) = n. +intro.apply (nat_case n) + [intros.reflexivity + |intros. + apply le_to_le_to_eq + [apply divides_to_le + [apply lt_O_S|apply divides_gcd_n] + |apply divides_to_le + [apply lt_O_gcd.rewrite > (times_n_O O). + apply lt_times[apply lt_O_S|assumption] + |apply divides_d_gcd + [apply (witness ? ? m1).reflexivity + |apply divides_n_n + ] + ] + ] + ] +qed. + theorem symmetric_gcd: symmetric nat gcd. -(*CSC: bug here: unfold symmetric does not work *) change with (\forall n,m:nat. gcd n m = gcd m n). intros. @@ -440,6 +645,41 @@ qed. (* for the "converse" of the previous result see the end of this development *) +theorem eq_gcd_SO_to_not_divides: \forall n,m. (S O) < n \to +(gcd n m) = (S O) \to \lnot (divides n m). +intros.unfold.intro. +elim H2. +generalize in match H1. +rewrite > H3. +intro. +cut (O < n2) + [elim (gcd_times_SO_to_gcd_SO n n n2 ? ? H4) + [cut (gcd n (n*n2) = n) + [apply (lt_to_not_eq (S O) n) + [assumption|rewrite < H4.assumption] + |apply gcd_n_times_nm.assumption + ] + |apply (trans_lt ? (S O))[apply le_n|assumption] + |assumption + ] + |elim (le_to_or_lt_eq O n2 (le_O_n n2)); + [assumption + |apply False_ind. + apply (le_to_not_lt n (S O)) + [rewrite < H4. + apply divides_to_le + [rewrite > H4.apply lt_O_S + |apply divides_d_gcd + [apply (witness ? ? n2).reflexivity + |apply divides_n_n + ] + ] + |assumption + ] + ] + ] +qed. + theorem gcd_SO_n: \forall n:nat. gcd (S O) n = (S O). intro. apply antisym_le.apply divides_to_le.unfold lt.apply le_n. @@ -505,6 +745,7 @@ apply gcd_O_to_eq_O.apply sym_eq.assumption. apply le_to_or_lt_eq.apply le_O_n. qed. +(* primes and divides *) theorem divides_times_to_divides: \forall n,p,q:nat.prime n \to n \divides p*q \to n \divides p \lor n \divides q. intros. @@ -558,6 +799,30 @@ cut (n \divides p \lor n \ndivides p) ] qed. +theorem divides_exp_to_divides: +\forall p,n,m:nat. prime p \to +p \divides n \sup m \to p \divides n. +intros 3.elim m.simplify in H1. +apply (transitive_divides p (S O)).assumption. +apply divides_SO_n. +cut (p \divides n \lor p \divides n \sup n1). +elim Hcut.assumption. +apply H.assumption.assumption. +apply divides_times_to_divides.assumption. +exact H2. +qed. + +theorem divides_exp_to_eq: +\forall p,q,m:nat. prime p \to prime q \to +p \divides q \sup m \to p = q. +intros. +unfold prime in H1. +elim H1.apply H4. +apply (divides_exp_to_divides p q m). +assumption.assumption. +unfold prime in H.elim H.assumption. +qed. + theorem eq_gcd_times_SO: \forall m,n,p:nat. O < n \to O < p \to gcd m n = (S O) \to gcd m p = (S O) \to gcd m (n*p) = (S O). intros. @@ -603,3 +868,67 @@ apply lt_O_gcd. rewrite > (times_n_O O). apply lt_times.assumption.assumption. qed. + +theorem gcd_SO_to_divides_times_to_divides: \forall m,n,p:nat. O < n \to +gcd n m = (S O) \to n \divides (m*p) \to n \divides p. +intros. +cut (n \divides p \lor n \ndivides p) + [elim Hcut + [assumption + |cut (\exists a,b. a*n - b*m = (S O) \lor b*m - a*n = (S O)) + [elim Hcut1.elim H4.elim H5 + [(* first case *) + rewrite > (times_n_SO p).rewrite < H6. + rewrite > distr_times_minus. + rewrite > (sym_times p (a1*m)). + rewrite > (assoc_times a1). + elim H2. + applyS (witness n ? ? (refl_eq ? ?)) (* timeout=50 *). + |(* second case *) + rewrite > (times_n_SO p).rewrite < H6. + rewrite > distr_times_minus. + rewrite > (sym_times p (a1*m)). + rewrite > (assoc_times a1). + elim H2. + applyS (witness n ? ? (refl_eq ? ?)). + ](* end second case *) + |rewrite < H1.apply eq_minus_gcd. + ] + ] + |apply (decidable_divides n p). + assumption. + ] +qed. + +(* +theorem divides_to_divides_times1: \forall p,q,n. prime p \to prime q \to p \neq q \to +divides p n \to divides q n \to divides (p*q) n. +intros.elim H3. +rewrite > H5 in H4. +elim (divides_times_to_divides ? ? ? H1 H4) + [elim H.apply False_ind. + apply H2.apply sym_eq.apply H8 + [assumption + |apply prime_to_lt_SO.assumption + ] + |elim H6. + apply (witness ? ? n1). + rewrite > assoc_times. + rewrite < H7.assumption + ] +qed. +*) + +theorem divides_to_divides_times: \forall p,q,n. prime p \to p \ndivides q \to +divides p n \to divides q n \to divides (p*q) n. +intros.elim H3. +rewrite > H4 in H2. +elim (divides_times_to_divides ? ? ? H H2) + [apply False_ind.apply H1.assumption + |elim H5. + apply (witness ? ? n1). + rewrite > sym_times in ⊢ (? ? ? (? % ?)). + rewrite > assoc_times. + rewrite < H6.assumption + ] +qed. \ No newline at end of file