X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fnat%2Fiteration2.ma;h=0230362e72aaa9610ffb25034c21f0028d4e8b69;hb=59cce4c27057cff97d9b4311a379c3107c5ee9a3;hp=e1cd09a207e369c1280a7b20b02fd1069d478c01;hpb=e0c0312bde81f2d47a7756e998ca8e9bd9f39832;p=helm.git diff --git a/helm/software/matita/library/nat/iteration2.ma b/helm/software/matita/library/nat/iteration2.ma index e1cd09a20..0230362e7 100644 --- a/helm/software/matita/library/nat/iteration2.ma +++ b/helm/software/matita/library/nat/iteration2.ma @@ -12,16 +12,17 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/nat/iteration2.ma". +set "baseuri" "cic:/matita/nat/iteration2". include "nat/primes.ma". include "nat/ord.ma". -include "nat/generic_sigma_p.ma". +include "nat/generic_iter_p.ma". +include "nat/count.ma".(*necessary just to use bool_to_nat and bool_to_nat_andb*) (* sigma_p on nautral numbers is a specialization of sigma_p_gen *) definition sigma_p: nat \to (nat \to bool) \to (nat \to nat) \to nat \def -\lambda n, p, g. (sigma_p_gen n p nat g O plus). +\lambda n, p, g. (iter_p_gen n p nat g O plus). theorem symmetricIntPlus: symmetric nat plus. change with (\forall a,b:nat. (plus a b) = (plus b a)). @@ -39,7 +40,7 @@ p n = true \to sigma_p (S n) p g = (g n)+(sigma_p n p g). intros. unfold sigma_p. -apply true_to_sigma_p_Sn_gen. +apply true_to_iter_p_gen_Sn. assumption. qed. @@ -48,10 +49,9 @@ theorem false_to_sigma_p_Sn: p n = false \to sigma_p (S n) p g = sigma_p n p g. intros. unfold sigma_p. -apply false_to_sigma_p_Sn_gen. +apply false_to_iter_p_gen_Sn. assumption. - -qed. +qed. theorem eq_sigma_p: \forall p1,p2:nat \to bool. \forall g1,g2: nat \to nat.\forall n. @@ -60,7 +60,7 @@ theorem eq_sigma_p: \forall p1,p2:nat \to bool. sigma_p n p1 g1 = sigma_p n p2 g2. intros. unfold sigma_p. -apply eq_sigma_p_gen; +apply eq_iter_p_gen; assumption. qed. @@ -71,7 +71,7 @@ theorem eq_sigma_p1: \forall p1,p2:nat \to bool. sigma_p n p1 g1 = sigma_p n p2 g2. intros. unfold sigma_p. -apply eq_sigma_p1_gen; +apply eq_iter_p_gen1; assumption. qed. @@ -79,7 +79,7 @@ theorem sigma_p_false: \forall g: nat \to nat.\forall n.sigma_p n (\lambda x.false) g = O. intros. unfold sigma_p. -apply sigma_p_false_gen. +apply iter_p_gen_false. qed. theorem sigma_p_plus: \forall n,k:nat.\forall p:nat \to bool. @@ -88,7 +88,7 @@ sigma_p (k+n) p g = sigma_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) + sigma_p n p g. intros. unfold sigma_p. -apply (sigma_p_plusA_gen nat n k p g O plus) +apply (iter_p_gen_plusA nat n k p g O plus) [ apply symmetricIntPlus. | intros. apply sym_eq. @@ -103,7 +103,7 @@ theorem false_to_eq_sigma_p: \forall n,m:nat.n \le m \to p i = false) \to sigma_p m p g = sigma_p n p g. intros. unfold sigma_p. -apply (false_to_eq_sigma_p_gen); +apply (false_to_eq_iter_p_gen); assumption. qed. @@ -118,7 +118,7 @@ sigma_p n p1 (\lambda x.sigma_p m p2 (g x)). intros. unfold sigma_p. -apply (sigma_p2_gen n m p1 p2 nat g O plus) +apply (iter_p_gen2 n m p1 p2 nat g O plus) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -133,13 +133,13 @@ theorem sigma_p2' : \forall p2:nat \to nat \to bool. \forall g: nat \to nat \to nat. sigma_p (n*m) - (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) + (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) (\lambda x.g (div x m) (mod x m)) = sigma_p n p1 (\lambda x.sigma_p m (p2 x) (g x)). intros. unfold sigma_p. -apply (sigma_p2_gen' n m p1 p2 nat g O plus) +apply (iter_p_gen2' n m p1 p2 nat g O plus) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -153,7 +153,7 @@ lemma sigma_p_gi: \forall g: nat \to nat. sigma_p n p g = g i + sigma_p n (\lambda x. andb (p x) (notb (eqb x i))) g. intros. unfold sigma_p. -apply (sigma_p_gi_gen) +apply (iter_p_gen_gi) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -173,10 +173,10 @@ theorem eq_sigma_p_gh: (\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to (\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to (\forall j. j < n1 \to p2 j = true \to h1 j < n) \to -sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 (\lambda x.p2 x) g. +sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 p2 g. intros. unfold sigma_p. -apply (eq_sigma_p_gh_gen nat O plus ? ? ? g h h1 n n1 p1 p2) +apply (eq_iter_p_gen_gh nat O plus ? ? ? g h h1 n n1 p1 p2) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -200,7 +200,7 @@ sigma_p (S n) (\lambda x.divides_b x n) (\lambda x.sigma_p (S m) (\lambda y.true) (\lambda y.g (x*(exp p y)))). intros. unfold sigma_p. -apply (sigma_p_divides_gen nat O plus n m p ? ? ? g) +apply (iter_p_gen_divides nat O plus n m p ? ? ? g) [ assumption | assumption | assumption @@ -215,7 +215,7 @@ qed. theorem distributive_times_plus_sigma_p: \forall n,k:nat. \forall p:nat \to bool. \forall g:nat \to nat. k*(sigma_p n p g) = sigma_p n p (\lambda i:nat.k * (g i)). intros. -apply (distributive_times_plus_sigma_p_generic nat plus O times n k p g) +apply (distributive_times_plus_iter_p_gen nat plus O times n k p g) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -229,3 +229,418 @@ apply (distributive_times_plus_sigma_p_generic nat plus O times n k p g) ] qed. +(*some properties of sigma_p invoked with an "always true" predicate (in this + way sigma_p just counts the elements, without doing any control) or with + the nat \to nat function which always returns (S O). + It 's not easily possible proving these theorems in a general form + in generic_sigma_p.ma + *) + +theorem sigma_p_true: \forall n:nat. +(sigma_p n (\lambda x.true) (\lambda x.S O)) = n. +intros. +elim n +[ simplify. + reflexivity +| rewrite > (true_to_sigma_p_Sn n1 (\lambda x:nat.true) (\lambda x:nat.S O)) + [ rewrite > H. + simplify. + reflexivity + | reflexivity + ] +] +qed. + +theorem sigma_P_SO_to_sigma_p_true: \forall n:nat. \forall g:nat \to bool. +sigma_p n g (\lambda n:nat. (S O)) = +sigma_p n (\lambda x:nat.true) (\lambda i:nat.bool_to_nat (g i)). +intros. +elim n +[ simplify. + reflexivity +| cut ((g n1) = true \lor (g n1) = false) + [ rewrite > true_to_sigma_p_Sn in \vdash (? ? ? %) + [ elim Hcut + [ rewrite > H1. + rewrite > true_to_sigma_p_Sn in \vdash (? ? % ?) + [ simplify. + apply eq_f. + assumption + | assumption + ] + | rewrite > H1. + rewrite > false_to_sigma_p_Sn in \vdash (? ? % ?) + [ simplify. + assumption + | assumption + ] + ] + | reflexivity + ] + | elim (g n1) + [ left. + reflexivity + | right. + reflexivity + ] + ] +] +qed. + +(* I introduce an equivalence in the form map_iter_i in order to use + * the existing result about permutation in that part of the library. + *) + +theorem eq_map_iter_i_sigma_p_alwaysTrue: \forall n:nat.\forall g:nat \to nat. +map_iter_i n g plus O = sigma_p (S n) (\lambda c:nat.true) g. +intros. +elim n +[ simplify. + rewrite < plus_n_O. + reflexivity +| rewrite > true_to_sigma_p_Sn + [ simplify in \vdash (? ? % ?). + rewrite < plus_n_O. + apply eq_f. + assumption + | reflexivity + ] +] +qed. + +theorem sigma_p_plus_1: \forall n:nat. \forall f,g:nat \to nat. +sigma_p n (\lambda b:nat. true) (\lambda a:nat.(f a) + (g a)) = +sigma_p n (\lambda b:nat. true) f + sigma_p n (\lambda b:nat. true) g. +intros. +elim n +[ simplify. + reflexivity +| rewrite > true_to_sigma_p_Sn + [ rewrite > (true_to_sigma_p_Sn n1 (\lambda c:nat.true) f) + [ rewrite > (true_to_sigma_p_Sn n1 (\lambda c:nat.true) g) + [ rewrite > assoc_plus in \vdash (? ? ? %). + rewrite < assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < sym_plus in \vdash (? ? ? (? ? (? % ?))). + rewrite > assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < assoc_plus in \vdash (? ? ? %). + apply eq_f. + assumption + | reflexivity + ] + | reflexivity + ] + | reflexivity + ] +] +qed. + + +theorem eq_sigma_p_sigma_p_times1 : \forall n,m:nat.\forall f:nat \to nat. +sigma_p (n*m) (\lambda x:nat.true) f = +sigma_p m (\lambda x:nat.true) + (\lambda a.(sigma_p n (\lambda x:nat.true) (\lambda b.f (b*m + a)))). +intro. +elim n +[ simplify. + elim m + [ simplify. + reflexivity + | rewrite > true_to_sigma_p_Sn + [ rewrite < H. + reflexivity + | reflexivity + ] + ] +| change in \vdash (? ? ? (? ? ? (\lambda a:?.%))) with ((f ((n1*m)+a)) + + (sigma_p n1 (\lambda x:nat.true) (\lambda b:nat.f (b*m +a)))). + rewrite > sigma_p_plus_1 in \vdash (? ? ? %). + rewrite > (sym_times (S n1) m). + rewrite < (times_n_Sm m n1). + rewrite > sigma_p_plus in \vdash (? ? % ?). + apply eq_f2 + [ rewrite < (sym_times m n1). + apply eq_sigma_p + [ intros. + reflexivity + | intros. + rewrite < (sym_plus ? (m * n1)). + reflexivity + ] + | rewrite > (sym_times m n1). + apply H + ] +] +qed. + +theorem eq_sigma_p_sigma_p_times2 : \forall n,m:nat.\forall f:nat \to nat. +sigma_p (n *m) (\lambda c:nat.true) f = +sigma_p n (\lambda c:nat.true) + (\lambda a.(sigma_p m (\lambda c:nat.true) (\lambda b:nat.f (b* n + a)))). +intros. +rewrite > sym_times. +apply eq_sigma_p_sigma_p_times1. +qed. + + +theorem sigma_p_times:\forall n,m:nat. +\forall f,f1,f2:nat \to bool. +\forall g:nat \to nat \to nat. +\forall g1,g2: nat \to nat. +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g b a) < (S n)*(S m)) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g1 (g b a)) = a) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g2 (g b a)) = b) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to f (g b a) = andb (f2 b) (f1 a)) \to +(sigma_p ((S n) * (S m)) f (\lambda c:nat.(S O))) = +sigma_p (S n) f1 (\lambda c:nat.(S O)) * sigma_p (S m) f2 (\lambda c:nat.(S O)). +intros. + +rewrite > (sigma_P_SO_to_sigma_p_true ). +rewrite > (S_pred ((S n)*(S m))) in \vdash (? ? (? % ? ?) ?) +[ rewrite < (eq_map_iter_i_sigma_p_alwaysTrue (pred ((S n)* (S m)))). + rewrite > (permut_to_eq_map_iter_i plus assoc_plus sym_plus ? ? ? + (\lambda i.g (div i (S n)) (mod i (S n)))) + [ rewrite > eq_map_iter_i_sigma_p_alwaysTrue. + rewrite < S_pred + [ rewrite > eq_sigma_p_sigma_p_times2. + apply (trans_eq ? ? (sigma_p (S n) (\lambda c:nat.true) + (\lambda a. sigma_p (S m) (\lambda c:nat.true) + (\lambda b.(bool_to_nat (f2 b))*(bool_to_nat (f1 a)))))) + [ apply eq_sigma_p;intros + [ reflexivity + | apply eq_sigma_p;intros + [ reflexivity + | + rewrite > (div_mod_spec_to_eq (x1*(S n) + x) (S n) ((x1*(S n) + x)/(S n)) + ((x1*(S n) + x) \mod (S n)) x1 x) + [ rewrite > (div_mod_spec_to_eq2 (x1*(S n) + x) (S n) ((x1*(S n) + x)/(S n)) + ((x1*(S n) + x) \mod (S n)) x1 x) + [ rewrite > H3 + [ apply bool_to_nat_andb + | assumption + | assumption + ] + | apply div_mod_spec_div_mod. + apply lt_O_S + | constructor 1 + [ assumption + | reflexivity + ] + ] + | apply div_mod_spec_div_mod. + apply lt_O_S + | constructor 1 + [ assumption + | reflexivity + ] + ] + ] + ] + | apply (trans_eq ? ? + (sigma_p (S n) (\lambda c:nat.true) (\lambda n.((bool_to_nat (f1 n)) * + (sigma_p (S m) (\lambda c:nat.true) (\lambda n.bool_to_nat (f2 n))))))) + [ apply eq_sigma_p;intros + [ reflexivity + | rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p;intros + [ reflexivity + | rewrite > sym_times. + reflexivity + ] + ] + | apply sym_eq. + rewrite > sigma_P_SO_to_sigma_p_true. + rewrite > sigma_P_SO_to_sigma_p_true in \vdash (? ? (? ? %) ?). + rewrite > sym_times. + rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p;intros + [ reflexivity + | rewrite > distributive_times_plus_sigma_p. + rewrite < sym_times. + rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p; + intros; reflexivity + ] + ] + ] + | apply lt_O_times_S_S + ] + + | unfold permut. + split + [ intros. + rewrite < plus_n_O. + apply le_S_S_to_le. + rewrite < S_pred in \vdash (? ? %) + [ change with ((g (i/(S n)) (i \mod (S n))) \lt (S n)*(S m)). + apply H + [ apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + rewrite > plus_n_O in \vdash (? ? %). + rewrite > sym_times. + assumption + | apply lt_O_times_S_S + ] + ] + ] + | apply lt_O_times_S_S + ] + | rewrite < plus_n_O. + unfold injn. + intros. + cut (i < (S n)*(S m)) + [ cut (j < (S n)*(S m)) + [ cut ((i \mod (S n)) < (S n)) + [ cut ((i/(S n)) < (S m)) + [ cut ((j \mod (S n)) < (S n)) + [ cut ((j/(S n)) < (S m)) + [ rewrite > (div_mod i (S n)) + [ rewrite > (div_mod j (S n)) + [ rewrite < (H1 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3). + rewrite < (H2 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3) in \vdash (? ? (? % ?) ?). + rewrite < (H1 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5). + rewrite < (H2 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5) in \vdash (? ? ? (? % ?)). + rewrite > H6. + reflexivity + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? j) + [ rewrite > (div_mod j (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. apply le_S_S. + apply le_O_n + ] + | rewrite < sym_times. + assumption + ] + ] + | apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | rewrite < sym_times. + assumption + ] + ] + | apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | apply lt_O_times_S_S + ] + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | apply lt_O_times_S_S + ] + ] + ] + | intros. + apply False_ind. + apply (not_le_Sn_O m1 H4) + ] +| apply lt_O_times_S_S +] +qed. + +theorem sigma_p_knm: +\forall g: nat \to nat. +\forall h2:nat \to nat \to nat. +\forall h11,h12:nat \to nat. +\forall k,n,m. +\forall p1,p21:nat \to bool. +\forall p22:nat \to nat \to bool. +(\forall x. x < k \to p1 x = true \to +p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true +\land h2 (h11 x) (h12 x) = x +\land (h11 x) < n \land (h12 x) < m) \to +(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to +p1 (h2 i j) = true \land +h11 (h2 i j) = i \land h12 (h2 i j) = j +\land h2 i j < k) \to +sigma_p k p1 g= +sigma_p n p21 (\lambda x:nat.sigma_p m (p22 x) (\lambda y. g (h2 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). +apply iter_p_gen_knm + [apply symmetricIntPlus + |apply associative_plus + |intro.rewrite < plus_n_O.reflexivity + |exact h11 + |exact h12 + |assumption + |assumption + ] +qed. + + +theorem sigma_p2_eq: +\forall g: nat \to nat \to nat. +\forall h11,h12,h21,h22: nat \to nat \to nat. +\forall n1,m1,n2,m2. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to +p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true +\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j +\land h11 i j < n1 \land h12 i j < m1) \to +(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to +p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true +\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j +\land (h21 i j) < n2 \land (h22 i j) < m2) \to +sigma_p n1 p11 (\lambda x:nat .sigma_p m1 (p12 x) (\lambda y. g x y)) = +sigma_p n2 p21 (\lambda x:nat .sigma_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? (? ? ? ? (\lambda x:?.%) ? ?) ?). +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). + +apply(iter_p_gen_2_eq nat O plus ? ? ? g h11 h12 h21 h22 n1 m1 n2 m2 p11 p21 p12 p22) +[ apply symmetricIntPlus +| apply associative_plus +| intro. + rewrite < (plus_n_O). + reflexivity +| assumption +| assumption +] +qed. \ No newline at end of file