X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fnat%2Fiteration2.ma;h=0230362e72aaa9610ffb25034c21f0028d4e8b69;hb=cb89a1eebdd620d7e1c593fa279e74d4c715b8bf;hp=4f0238498c500d0409c25e3d73196e6d3704dd31;hpb=3ed7d56cf4fab7401f8b400c45b2e35579ba71dd;p=helm.git diff --git a/helm/software/matita/library/nat/iteration2.ma b/helm/software/matita/library/nat/iteration2.ma index 4f0238498..0230362e7 100644 --- a/helm/software/matita/library/nat/iteration2.ma +++ b/helm/software/matita/library/nat/iteration2.ma @@ -16,13 +16,13 @@ set "baseuri" "cic:/matita/nat/iteration2". include "nat/primes.ma". include "nat/ord.ma". -include "nat/generic_sigma_p.ma". +include "nat/generic_iter_p.ma". include "nat/count.ma".(*necessary just to use bool_to_nat and bool_to_nat_andb*) (* sigma_p on nautral numbers is a specialization of sigma_p_gen *) definition sigma_p: nat \to (nat \to bool) \to (nat \to nat) \to nat \def -\lambda n, p, g. (sigma_p_gen n p nat g O plus). +\lambda n, p, g. (iter_p_gen n p nat g O plus). theorem symmetricIntPlus: symmetric nat plus. change with (\forall a,b:nat. (plus a b) = (plus b a)). @@ -40,7 +40,7 @@ p n = true \to sigma_p (S n) p g = (g n)+(sigma_p n p g). intros. unfold sigma_p. -apply true_to_sigma_p_Sn_gen. +apply true_to_iter_p_gen_Sn. assumption. qed. @@ -49,10 +49,9 @@ theorem false_to_sigma_p_Sn: p n = false \to sigma_p (S n) p g = sigma_p n p g. intros. unfold sigma_p. -apply false_to_sigma_p_Sn_gen. +apply false_to_iter_p_gen_Sn. assumption. - -qed. +qed. theorem eq_sigma_p: \forall p1,p2:nat \to bool. \forall g1,g2: nat \to nat.\forall n. @@ -61,7 +60,7 @@ theorem eq_sigma_p: \forall p1,p2:nat \to bool. sigma_p n p1 g1 = sigma_p n p2 g2. intros. unfold sigma_p. -apply eq_sigma_p_gen; +apply eq_iter_p_gen; assumption. qed. @@ -72,7 +71,7 @@ theorem eq_sigma_p1: \forall p1,p2:nat \to bool. sigma_p n p1 g1 = sigma_p n p2 g2. intros. unfold sigma_p. -apply eq_sigma_p1_gen; +apply eq_iter_p_gen1; assumption. qed. @@ -80,7 +79,7 @@ theorem sigma_p_false: \forall g: nat \to nat.\forall n.sigma_p n (\lambda x.false) g = O. intros. unfold sigma_p. -apply sigma_p_false_gen. +apply iter_p_gen_false. qed. theorem sigma_p_plus: \forall n,k:nat.\forall p:nat \to bool. @@ -89,7 +88,7 @@ sigma_p (k+n) p g = sigma_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) + sigma_p n p g. intros. unfold sigma_p. -apply (sigma_p_plusA_gen nat n k p g O plus) +apply (iter_p_gen_plusA nat n k p g O plus) [ apply symmetricIntPlus. | intros. apply sym_eq. @@ -104,7 +103,7 @@ theorem false_to_eq_sigma_p: \forall n,m:nat.n \le m \to p i = false) \to sigma_p m p g = sigma_p n p g. intros. unfold sigma_p. -apply (false_to_eq_sigma_p_gen); +apply (false_to_eq_iter_p_gen); assumption. qed. @@ -119,7 +118,7 @@ sigma_p n p1 (\lambda x.sigma_p m p2 (g x)). intros. unfold sigma_p. -apply (sigma_p2_gen n m p1 p2 nat g O plus) +apply (iter_p_gen2 n m p1 p2 nat g O plus) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -134,13 +133,13 @@ theorem sigma_p2' : \forall p2:nat \to nat \to bool. \forall g: nat \to nat \to nat. sigma_p (n*m) - (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) + (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) (\lambda x.g (div x m) (mod x m)) = sigma_p n p1 (\lambda x.sigma_p m (p2 x) (g x)). intros. unfold sigma_p. -apply (sigma_p2_gen' n m p1 p2 nat g O plus) +apply (iter_p_gen2' n m p1 p2 nat g O plus) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -154,7 +153,7 @@ lemma sigma_p_gi: \forall g: nat \to nat. sigma_p n p g = g i + sigma_p n (\lambda x. andb (p x) (notb (eqb x i))) g. intros. unfold sigma_p. -apply (sigma_p_gi_gen) +apply (iter_p_gen_gi) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -174,10 +173,10 @@ theorem eq_sigma_p_gh: (\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to (\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to (\forall j. j < n1 \to p2 j = true \to h1 j < n) \to -sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 (\lambda x.p2 x) g. +sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 p2 g. intros. unfold sigma_p. -apply (eq_sigma_p_gh_gen nat O plus ? ? ? g h h1 n n1 p1 p2) +apply (eq_iter_p_gen_gh nat O plus ? ? ? g h h1 n n1 p1 p2) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -201,7 +200,7 @@ sigma_p (S n) (\lambda x.divides_b x n) (\lambda x.sigma_p (S m) (\lambda y.true) (\lambda y.g (x*(exp p y)))). intros. unfold sigma_p. -apply (sigma_p_divides_gen nat O plus n m p ? ? ? g) +apply (iter_p_gen_divides nat O plus n m p ? ? ? g) [ assumption | assumption | assumption @@ -216,7 +215,7 @@ qed. theorem distributive_times_plus_sigma_p: \forall n,k:nat. \forall p:nat \to bool. \forall g:nat \to nat. k*(sigma_p n p g) = sigma_p n p (\lambda i:nat.k * (g i)). intros. -apply (distributive_times_plus_sigma_p_generic nat plus O times n k p g) +apply (distributive_times_plus_iter_p_gen nat plus O times n k p g) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -581,3 +580,67 @@ rewrite > (S_pred ((S n)*(S m))) in \vdash (? ? (? % ? ?) ?) | apply lt_O_times_S_S ] qed. + +theorem sigma_p_knm: +\forall g: nat \to nat. +\forall h2:nat \to nat \to nat. +\forall h11,h12:nat \to nat. +\forall k,n,m. +\forall p1,p21:nat \to bool. +\forall p22:nat \to nat \to bool. +(\forall x. x < k \to p1 x = true \to +p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true +\land h2 (h11 x) (h12 x) = x +\land (h11 x) < n \land (h12 x) < m) \to +(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to +p1 (h2 i j) = true \land +h11 (h2 i j) = i \land h12 (h2 i j) = j +\land h2 i j < k) \to +sigma_p k p1 g= +sigma_p n p21 (\lambda x:nat.sigma_p m (p22 x) (\lambda y. g (h2 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). +apply iter_p_gen_knm + [apply symmetricIntPlus + |apply associative_plus + |intro.rewrite < plus_n_O.reflexivity + |exact h11 + |exact h12 + |assumption + |assumption + ] +qed. + + +theorem sigma_p2_eq: +\forall g: nat \to nat \to nat. +\forall h11,h12,h21,h22: nat \to nat \to nat. +\forall n1,m1,n2,m2. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to +p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true +\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j +\land h11 i j < n1 \land h12 i j < m1) \to +(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to +p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true +\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j +\land (h21 i j) < n2 \land (h22 i j) < m2) \to +sigma_p n1 p11 (\lambda x:nat .sigma_p m1 (p12 x) (\lambda y. g x y)) = +sigma_p n2 p21 (\lambda x:nat .sigma_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? (? ? ? ? (\lambda x:?.%) ? ?) ?). +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). + +apply(iter_p_gen_2_eq nat O plus ? ? ? g h11 h12 h21 h22 n1 m1 n2 m2 p11 p21 p12 p22) +[ apply symmetricIntPlus +| apply associative_plus +| intro. + rewrite < (plus_n_O). + reflexivity +| assumption +| assumption +] +qed. \ No newline at end of file