X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fnat%2Fiteration2.ma;h=211df69d0fa0d9941a9dcf14bebca51e1812ffda;hb=10f29fdd78ee089a9a94446207b543d33d6c851c;hp=4f0238498c500d0409c25e3d73196e6d3704dd31;hpb=3ed7d56cf4fab7401f8b400c45b2e35579ba71dd;p=helm.git diff --git a/helm/software/matita/library/nat/iteration2.ma b/helm/software/matita/library/nat/iteration2.ma index 4f0238498..211df69d0 100644 --- a/helm/software/matita/library/nat/iteration2.ma +++ b/helm/software/matita/library/nat/iteration2.ma @@ -16,13 +16,13 @@ set "baseuri" "cic:/matita/nat/iteration2". include "nat/primes.ma". include "nat/ord.ma". -include "nat/generic_sigma_p.ma". +include "nat/generic_iter_p.ma". include "nat/count.ma".(*necessary just to use bool_to_nat and bool_to_nat_andb*) (* sigma_p on nautral numbers is a specialization of sigma_p_gen *) definition sigma_p: nat \to (nat \to bool) \to (nat \to nat) \to nat \def -\lambda n, p, g. (sigma_p_gen n p nat g O plus). +\lambda n, p, g. (iter_p_gen n p nat g O plus). theorem symmetricIntPlus: symmetric nat plus. change with (\forall a,b:nat. (plus a b) = (plus b a)). @@ -40,7 +40,7 @@ p n = true \to sigma_p (S n) p g = (g n)+(sigma_p n p g). intros. unfold sigma_p. -apply true_to_sigma_p_Sn_gen. +apply true_to_iter_p_gen_Sn. assumption. qed. @@ -49,10 +49,9 @@ theorem false_to_sigma_p_Sn: p n = false \to sigma_p (S n) p g = sigma_p n p g. intros. unfold sigma_p. -apply false_to_sigma_p_Sn_gen. +apply false_to_iter_p_gen_Sn. assumption. - -qed. +qed. theorem eq_sigma_p: \forall p1,p2:nat \to bool. \forall g1,g2: nat \to nat.\forall n. @@ -61,7 +60,7 @@ theorem eq_sigma_p: \forall p1,p2:nat \to bool. sigma_p n p1 g1 = sigma_p n p2 g2. intros. unfold sigma_p. -apply eq_sigma_p_gen; +apply eq_iter_p_gen; assumption. qed. @@ -72,7 +71,7 @@ theorem eq_sigma_p1: \forall p1,p2:nat \to bool. sigma_p n p1 g1 = sigma_p n p2 g2. intros. unfold sigma_p. -apply eq_sigma_p1_gen; +apply eq_iter_p_gen1; assumption. qed. @@ -80,7 +79,7 @@ theorem sigma_p_false: \forall g: nat \to nat.\forall n.sigma_p n (\lambda x.false) g = O. intros. unfold sigma_p. -apply sigma_p_false_gen. +apply iter_p_gen_false. qed. theorem sigma_p_plus: \forall n,k:nat.\forall p:nat \to bool. @@ -89,7 +88,7 @@ sigma_p (k+n) p g = sigma_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) + sigma_p n p g. intros. unfold sigma_p. -apply (sigma_p_plusA_gen nat n k p g O plus) +apply (iter_p_gen_plusA nat n k p g O plus) [ apply symmetricIntPlus. | intros. apply sym_eq. @@ -104,10 +103,88 @@ theorem false_to_eq_sigma_p: \forall n,m:nat.n \le m \to p i = false) \to sigma_p m p g = sigma_p n p g. intros. unfold sigma_p. -apply (false_to_eq_sigma_p_gen); +apply (false_to_eq_iter_p_gen); assumption. qed. +theorem or_false_to_eq_sigma_p: +\forall n,m:nat.\forall p:nat \to bool. +\forall g: nat \to nat. +n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false \lor g i = O) +\to sigma_p m p g = sigma_p n p g. +intros. +unfold sigma_p. +apply or_false_eq_baseA_to_eq_iter_p_gen + [intros.reflexivity + |assumption + |assumption + ] +qed. + +theorem bool_to_nat_to_eq_sigma_p: +\forall n:nat.\forall p1,p2:nat \to bool. +\forall g1,g2: nat \to nat. +(\forall i:nat. +bool_to_nat (p1 i)*(g1 i) = bool_to_nat (p2 i)*(g2 i)) +\to sigma_p n p1 g1 = sigma_p n p2 g2. +intros.elim n + [reflexivity + |generalize in match (H n1). + apply (bool_elim ? (p1 n1));intro + [apply (bool_elim ? (p2 n1));intros + [rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn + [apply eq_f2 + [simplify in H4. + rewrite > plus_n_O. + rewrite > plus_n_O in ⊢ (? ? ? %). + assumption + |assumption + ] + |assumption + ] + |assumption + ] + |rewrite > true_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn + [change in ⊢ (? ? ? %) with (O + sigma_p n1 p2 g2). + apply eq_f2 + [simplify in H4. + rewrite > plus_n_O. + assumption + |assumption + ] + |assumption + ] + |assumption + ] + ] + |apply (bool_elim ? (p2 n1));intros + [rewrite > false_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn + [change in ⊢ (? ? % ?) with (O + sigma_p n1 p1 g1). + apply eq_f2 + [simplify in H4. + rewrite < plus_n_O in H4. + assumption + |assumption + ] + |assumption + ] + |assumption + ] + |rewrite > false_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn + [assumption + |assumption + ] + |assumption + ] + ] + ] + ] +qed. + theorem sigma_p2 : \forall n,m:nat. \forall p1,p2:nat \to bool. @@ -119,7 +196,7 @@ sigma_p n p1 (\lambda x.sigma_p m p2 (g x)). intros. unfold sigma_p. -apply (sigma_p2_gen n m p1 p2 nat g O plus) +apply (iter_p_gen2 n m p1 p2 nat g O plus) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -134,13 +211,13 @@ theorem sigma_p2' : \forall p2:nat \to nat \to bool. \forall g: nat \to nat \to nat. sigma_p (n*m) - (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) + (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) (\lambda x.g (div x m) (mod x m)) = sigma_p n p1 (\lambda x.sigma_p m (p2 x) (g x)). intros. unfold sigma_p. -apply (sigma_p2_gen' n m p1 p2 nat g O plus) +apply (iter_p_gen2' n m p1 p2 nat g O plus) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -154,7 +231,7 @@ lemma sigma_p_gi: \forall g: nat \to nat. sigma_p n p g = g i + sigma_p n (\lambda x. andb (p x) (notb (eqb x i))) g. intros. unfold sigma_p. -apply (sigma_p_gi_gen) +apply (iter_p_gen_gi) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -174,10 +251,10 @@ theorem eq_sigma_p_gh: (\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to (\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to (\forall j. j < n1 \to p2 j = true \to h1 j < n) \to -sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 (\lambda x.p2 x) g. +sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 p2 g. intros. unfold sigma_p. -apply (eq_sigma_p_gh_gen nat O plus ? ? ? g h h1 n n1 p1 p2) +apply (eq_iter_p_gen_gh nat O plus ? ? ? g h h1 n n1 p1 p2) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -192,7 +269,249 @@ apply (eq_sigma_p_gh_gen nat O plus ? ? ? g h h1 n n1 p1 p2) ] qed. +theorem eq_sigma_p_pred: +\forall n,p,g. p O = true \to +sigma_p (S n) (\lambda i.p (pred i)) (\lambda i.g(pred i)) = +plus (sigma_p n p g) (g O). +intros. +unfold sigma_p. +apply eq_iter_p_gen_pred + [assumption + |apply symmetricIntPlus + |apply associative_plus + |intros.apply sym_eq.apply plus_n_O + ] +qed. + +(* monotonicity *) +theorem le_sigma_p: +\forall n:nat. \forall p:nat \to bool. \forall g1,g2:nat \to nat. +(\forall i. i < n \to p i = true \to g1 i \le g2 i ) \to +sigma_p n p g1 \le sigma_p n p g2. +intros. +generalize in match H. +elim n + [apply le_n. + |apply (bool_elim ? (p n1));intros + [rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [apply le_plus + [apply H2[apply le_n|assumption] + |apply H1. + intros. + apply H2[apply le_S.assumption|assumption] + ] + |assumption + ] + |assumption + ] + |rewrite > false_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn in ⊢ (? ? %) + [apply H1. + intros. + apply H2[apply le_S.assumption|assumption] + |assumption + ] + |assumption + ] + ] + ] +qed. +(* a slightly more general result *) +theorem le_sigma_p1: +\forall n:nat. \forall p1,p2:nat \to bool. \forall g1,g2:nat \to nat. +(\forall i. i < n \to +bool_to_nat (p1 i)*(g1 i) \le bool_to_nat (p2 i)*g2 i) \to +sigma_p n p1 g1 \le sigma_p n p2 g2. +intros. +generalize in match H. +elim n + [apply le_n. + |apply (bool_elim ? (p1 n1));intros + [apply (bool_elim ? (p2 n1));intros + [rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [apply le_plus + [lapply (H2 n1) as H5 + [rewrite > H3 in H5. + rewrite > H4 in H5. + simplify in H5. + rewrite < plus_n_O in H5. + rewrite < plus_n_O in H5. + assumption + |apply le_S_S.apply le_n + ] + |apply H1.intros. + apply H2.apply le_S.assumption + ] + |assumption + ] + |assumption + ] + |rewrite > true_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn in ⊢ (? ? %) + [change in ⊢ (? ? %) with (O + sigma_p n1 p2 g2). + apply le_plus + [lapply (H2 n1) as H5 + [rewrite > H3 in H5. + rewrite > H4 in H5. + simplify in H5. + rewrite < plus_n_O in H5. + assumption + |apply le_S_S.apply le_n + ] + |apply H1.intros. + apply H2.apply le_S.assumption + ] + |assumption + ] + |assumption + ] + ] + |apply (bool_elim ? (p2 n1));intros + [rewrite > false_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [change in ⊢ (? % ?) with (O + sigma_p n1 p1 g1). + apply le_plus + [lapply (H2 n1) as H5 + [rewrite > H3 in H5. + rewrite > H4 in H5. + simplify in H5. + rewrite < plus_n_O in H5. + assumption + |apply le_S_S.apply le_n + ] + |apply H1.intros. + apply H2.apply le_S.assumption + ] + |assumption + ] + |assumption + ] + |rewrite > false_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn in ⊢ (? ? %) + [apply H1.intros. + apply H2.apply le_S.assumption + |assumption + ] + |assumption + ] + ] + ] + ] +qed. + +theorem lt_sigma_p: +\forall n:nat. \forall p:nat \to bool. \forall g1,g2:nat \to nat. +(\forall i. i < n \to p i = true \to g1 i \le g2 i ) \to +(\exists i. i < n \and (p i = true) \and (g1 i < g2 i)) \to +sigma_p n p g1 < sigma_p n p g2. +intros 4. +elim n + [elim H1.clear H1. + elim H2.clear H2. + elim H1.clear H1. + apply False_ind. + apply (lt_to_not_le ? ? H2). + apply le_O_n + |apply (bool_elim ? (p n1));intros + [apply (bool_elim ? (leb (S (g1 n1)) (g2 n1)));intros + [rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [change with + (S (g1 n1)+sigma_p n1 p g1 \le g2 n1+sigma_p n1 p g2). + apply le_plus + [apply leb_true_to_le.assumption + |apply le_sigma_p.intros. + apply H1 + [apply lt_to_le.apply le_S_S.assumption + |assumption + ] + ] + |assumption + ] + |assumption + ] + |rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [unfold lt. + rewrite > plus_n_Sm. + apply le_plus + [apply H1 + [apply le_n + |assumption + ] + |apply H + [intros.apply H1 + [apply lt_to_le.apply le_S_S.assumption + |assumption + ] + |elim H2.clear H2. + elim H5.clear H5. + elim H2.clear H2. + apply (ex_intro ? ? a). + split + [split + [elim (le_to_or_lt_eq a n1) + [assumption + |absurd (g1 a < g2 a) + [assumption + |apply leb_false_to_not_le. + rewrite > H2. + assumption + ] + |apply le_S_S_to_le. + assumption + ] + |assumption + ] + |assumption + ] + ] + ] + |assumption + ] + |assumption + ] + ] + |rewrite > false_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn in ⊢ (? ? %) + [apply H + [intros.apply H1 + [apply lt_to_le.apply le_S_S.assumption + |assumption + ] + |elim H2.clear H2. + elim H4.clear H4. + elim H2.clear H2. + apply (ex_intro ? ? a). + split + [split + [elim (le_to_or_lt_eq a n1) + [assumption + |apply False_ind. + apply not_eq_true_false. + rewrite < H6. + rewrite < H3. + rewrite < H2. + reflexivity + |apply le_S_S_to_le. + assumption + ] + |assumption + ] + |assumption + ] + ] + |assumption + ] + |assumption + ] + ] + ] +qed. + theorem sigma_p_divides: \forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to \forall g: nat \to nat. @@ -201,7 +520,7 @@ sigma_p (S n) (\lambda x.divides_b x n) (\lambda x.sigma_p (S m) (\lambda y.true) (\lambda y.g (x*(exp p y)))). intros. unfold sigma_p. -apply (sigma_p_divides_gen nat O plus n m p ? ? ? g) +apply (iter_p_gen_divides nat O plus n m p ? ? ? g) [ assumption | assumption | assumption @@ -216,7 +535,7 @@ qed. theorem distributive_times_plus_sigma_p: \forall n,k:nat. \forall p:nat \to bool. \forall g:nat \to nat. k*(sigma_p n p g) = sigma_p n p (\lambda i:nat.k * (g i)). intros. -apply (distributive_times_plus_sigma_p_generic nat plus O times n k p g) +apply (distributive_times_plus_iter_p_gen nat plus O times n k p g) [ apply symmetricIntPlus | apply associative_plus | intros. @@ -310,32 +629,33 @@ elim n qed. theorem sigma_p_plus_1: \forall n:nat. \forall f,g:nat \to nat. -sigma_p n (\lambda b:nat. true) (\lambda a:nat.(f a) + (g a)) = -sigma_p n (\lambda b:nat. true) f + sigma_p n (\lambda b:nat. true) g. +\forall p. +sigma_p n p (\lambda a:nat.(f a) + (g a)) = +sigma_p n p f + sigma_p n p g. intros. elim n [ simplify. reflexivity -| rewrite > true_to_sigma_p_Sn - [ rewrite > (true_to_sigma_p_Sn n1 (\lambda c:nat.true) f) - [ rewrite > (true_to_sigma_p_Sn n1 (\lambda c:nat.true) g) - [ rewrite > assoc_plus in \vdash (? ? ? %). - rewrite < assoc_plus in \vdash (? ? ? (? ? %)). - rewrite < sym_plus in \vdash (? ? ? (? ? (? % ?))). - rewrite > assoc_plus in \vdash (? ? ? (? ? %)). - rewrite < assoc_plus in \vdash (? ? ? %). - apply eq_f. - assumption - | reflexivity - ] - | reflexivity - ] - | reflexivity - ] -] +| apply (bool_elim ? (p n1)); intro; + [ rewrite > true_to_sigma_p_Sn + [ rewrite > (true_to_sigma_p_Sn n1 p f) + [ rewrite > (true_to_sigma_p_Sn n1 p g) + [ rewrite > assoc_plus in \vdash (? ? ? %). + rewrite < assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < sym_plus in \vdash (? ? ? (? ? (? % ?))). + rewrite > assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < assoc_plus in \vdash (? ? ? %). + apply eq_f. + assumption]]] + assumption + | rewrite > false_to_sigma_p_Sn + [ rewrite > (false_to_sigma_p_Sn n1 p f) + [ rewrite > (false_to_sigma_p_Sn n1 p g) + [assumption]]] + assumption +]] qed. - theorem eq_sigma_p_sigma_p_times1 : \forall n,m:nat.\forall f:nat \to nat. sigma_p (n*m) (\lambda x:nat.true) f = sigma_p m (\lambda x:nat.true) @@ -382,7 +702,6 @@ rewrite > sym_times. apply eq_sigma_p_sigma_p_times1. qed. - theorem sigma_p_times:\forall n,m:nat. \forall f,f1,f2:nat \to bool. \forall g:nat \to nat \to nat. @@ -581,3 +900,84 @@ rewrite > (S_pred ((S n)*(S m))) in \vdash (? ? (? % ? ?) ?) | apply lt_O_times_S_S ] qed. + +theorem sigma_p_knm: +\forall g: nat \to nat. +\forall h2:nat \to nat \to nat. +\forall h11,h12:nat \to nat. +\forall k,n,m. +\forall p1,p21:nat \to bool. +\forall p22:nat \to nat \to bool. +(\forall x. x < k \to p1 x = true \to +p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true +\land h2 (h11 x) (h12 x) = x +\land (h11 x) < n \land (h12 x) < m) \to +(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to +p1 (h2 i j) = true \land +h11 (h2 i j) = i \land h12 (h2 i j) = j +\land h2 i j < k) \to +sigma_p k p1 g= +sigma_p n p21 (\lambda x:nat.sigma_p m (p22 x) (\lambda y. g (h2 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). +apply iter_p_gen_knm + [apply symmetricIntPlus + |apply associative_plus + |intro.rewrite < plus_n_O.reflexivity + |exact h11 + |exact h12 + |assumption + |assumption + ] +qed. + + +theorem sigma_p2_eq: +\forall g: nat \to nat \to nat. +\forall h11,h12,h21,h22: nat \to nat \to nat. +\forall n1,m1,n2,m2. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to +p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true +\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j +\land h11 i j < n1 \land h12 i j < m1) \to +(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to +p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true +\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j +\land (h21 i j) < n2 \land (h22 i j) < m2) \to +sigma_p n1 p11 (\lambda x:nat .sigma_p m1 (p12 x) (\lambda y. g x y)) = +sigma_p n2 p21 (\lambda x:nat .sigma_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? (? ? ? ? (\lambda x:?.%) ? ?) ?). +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). + +apply(iter_p_gen_2_eq nat O plus ? ? ? g h11 h12 h21 h22 n1 m1 n2 m2 p11 p21 p12 p22) +[ apply symmetricIntPlus +| apply associative_plus +| intro. + rewrite < (plus_n_O). + reflexivity +| assumption +| assumption +] +qed. + +theorem sigma_p_sigma_p: +\forall g: nat \to nat \to nat. +\forall n,m. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall x,y. x < n \to y < m \to + (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to +sigma_p n p11 (\lambda x:nat.sigma_p m (p12 x) (\lambda y. g x y)) = +sigma_p m p21 (\lambda y:nat.sigma_p n (p22 y) (\lambda x. g x y)). +intros. +unfold sigma_p.unfold sigma_p. +apply (iter_p_gen_iter_p_gen ? ? ? sym_plus assoc_plus) + [intros.apply sym_eq.apply plus_n_O. + |assumption + ] +qed. \ No newline at end of file