X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fnat%2Fnth_prime.ma;h=f675e80ba45717620d95a25c5081ca93bcd956c7;hb=10f29fdd78ee089a9a94446207b543d33d6c851c;hp=9d01e99f211e0b3a6e65cc7cb567c732aeff1c6e;hpb=6423f1b6e3056883016598e454c55cab1004dfd2;p=helm.git diff --git a/helm/software/matita/library/nat/nth_prime.ma b/helm/software/matita/library/nat/nth_prime.ma index 9d01e99f2..f675e80ba 100644 --- a/helm/software/matita/library/nat/nth_prime.ma +++ b/helm/software/matita/library/nat/nth_prime.ma @@ -74,11 +74,9 @@ match n with | (S p) \Rightarrow let previous_prime \def (nth_prime p) in let upper_bound \def S previous_prime! in - min_aux (upper_bound - (S previous_prime)) upper_bound primeb]. + min_aux upper_bound (S previous_prime) primeb]. -(* it works, but nth_prime 4 takes already a few minutes - -it must compute factorial of 7 ...*) - +(* it works theorem example11 : nth_prime (S(S O)) = (S(S(S(S(S O))))). normalize.reflexivity. qed. @@ -91,10 +89,11 @@ theorem example13 : nth_prime (S(S(S(S O)))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))) normalize.reflexivity. qed. -(* -theorem example14 : nth_prime (S(S(S(S(S O))))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). +alias num (instance 0) = "natural number". +theorem example14 : nth_prime 18 = 67. normalize.reflexivity. -*) +qed. +*) theorem prime_nth_prime : \forall n:nat.prime (nth_prime n). intro. @@ -104,19 +103,17 @@ intro. change with (let previous_prime \def (nth_prime m) in let upper_bound \def S previous_prime! in -prime (min_aux (upper_bound - (S previous_prime)) upper_bound primeb)). +prime (min_aux upper_bound (S previous_prime) primeb)). apply primeb_true_to_prime. apply f_min_aux_true. apply (ex_intro nat ? (smallest_factor (S (nth_prime m)!))). split.split. -cut (S (nth_prime m)!-(S (nth_prime m)! - (S (nth_prime m))) = (S (nth_prime m))). -rewrite > Hcut.exact (smallest_factor_fact (nth_prime m)). -(* maybe we could factorize this proof *) -apply plus_to_minus. -apply plus_minus_m_m. -apply le_S_S. -apply le_n_fact_n. -apply le_smallest_factor_n. +apply smallest_factor_fact. +apply transitive_le; + [2: apply le_smallest_factor_n + | skip + | apply (le_plus_n_r (S (nth_prime m)) (S (fact (nth_prime m)))) + ]. apply prime_to_primeb_true. apply prime_smallest_factor_n.unfold lt. apply le_S_S.apply le_SO_fact. @@ -129,15 +126,9 @@ intros. change with (let previous_prime \def (nth_prime n) in let upper_bound \def S previous_prime! in -(S previous_prime) \le min_aux (upper_bound - (S previous_prime)) upper_bound primeb). +(S previous_prime) \le min_aux upper_bound (S previous_prime) primeb). intros. -cut (upper_bound - (upper_bound -(S previous_prime)) = (S previous_prime)). -rewrite < Hcut in \vdash (? % ?). apply le_min_aux. -apply plus_to_minus. -apply plus_minus_m_m. -apply le_S_S. -apply le_n_fact_n. qed. variant lt_nth_prime_n_nth_prime_Sn :\forall n:nat. @@ -184,14 +175,13 @@ intros. apply primeb_false_to_not_prime. letin previous_prime \def (nth_prime n). letin upper_bound \def (S previous_prime!). -apply (lt_min_aux_to_false primeb upper_bound (upper_bound - (S previous_prime)) m). -cut (S (nth_prime n)!-(S (nth_prime n)! - (S (nth_prime n))) = (S (nth_prime n))). -rewrite > Hcut.assumption. -apply plus_to_minus. -apply plus_minus_m_m. -apply le_S_S. -apply le_n_fact_n. +apply (lt_min_aux_to_false primeb (S previous_prime) upper_bound m). assumption. +unfold lt. +apply (transitive_le (S m) (nth_prime (S n)) (min_aux (S (fact (nth_prime n))) (S (nth_prime n)) primeb) ? ?); + [apply (H1). + |apply (le_n (min_aux (S (fact (nth_prime n))) (S (nth_prime n)) primeb)). + ] qed. (* nth_prime enumerates all primes *)