X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Flibrary%2Fnat%2Fprimes.ma;h=0186d4324e3890666660282de63d5dc619a83520;hb=10f29fdd78ee089a9a94446207b543d33d6c851c;hp=f7d6970063c4cf9b06a1e771c73b50c876bc1894;hpb=db9c252cc8adb9243892203805b203bafe486bfc;p=helm.git diff --git a/helm/software/matita/library/nat/primes.ma b/helm/software/matita/library/nat/primes.ma index f7d697006..0186d4324 100644 --- a/helm/software/matita/library/nat/primes.ma +++ b/helm/software/matita/library/nat/primes.ma @@ -190,8 +190,33 @@ rewrite > H2.rewrite < H3. simplify.exact (not_le_Sn_n O). qed. - -(*divides and div*) +(*a variant of or_div_mod *) +theorem or_div_mod1: \forall n,q. O < q \to +(divides q (S n)) \land S n = (S (div n q)) * q \lor +(\lnot (divides q (S n)) \land S n= (div n q) * q + S (n\mod q)). +intros.elim (or_div_mod n q H);elim H1 + [left.split + [apply (witness ? ? (S (n/q))). + rewrite > sym_times.assumption + |assumption + ] + |right.split + [intro. + apply (not_eq_O_S (n \mod q)). + (* come faccio a fare unfold nelleipotesi ? *) + cut ((S n) \mod q = O) + [rewrite < Hcut. + apply (div_mod_spec_to_eq2 (S n) q (div (S n) q) (mod (S n) q) (div n q) (S (mod n q))) + [apply div_mod_spec_div_mod. + assumption + |apply div_mod_spec_intro;assumption + ] + |apply divides_to_mod_O;assumption + ] + |assumption + ] + ] +qed. theorem divides_to_div: \forall n,m.divides n m \to m/n*n = m. intro. @@ -211,6 +236,14 @@ elim (le_to_or_lt_eq O n (le_O_n n)) ] qed. +theorem divides_div: \forall d,n. divides d n \to divides (n/d) n. +intros. +apply (witness ? ? d). +apply sym_eq. +apply divides_to_div. +assumption. +qed. + theorem div_div: \forall n,d:nat. O < n \to divides d n \to n/(n/d) = d. intros. @@ -253,6 +286,28 @@ cut(O \lt c) ] qed. +theorem eq_div_plus: \forall n,m,d. O < d \to +divides d n \to divides d m \to +(n + m ) / d = n/d + m/d. +intros. +elim H1. +elim H2. +rewrite > H3.rewrite > H4. +rewrite < distr_times_plus. +rewrite > sym_times. +rewrite > sym_times in ⊢ (? ? ? (? (? % ?) ?)). +rewrite > sym_times in ⊢ (? ? ? (? ? (? % ?))). +rewrite > lt_O_to_div_times + [rewrite > lt_O_to_div_times + [rewrite > lt_O_to_div_times + [reflexivity + |assumption + ] + |assumption + ] + |assumption + ] +qed. (* boolean divides *) definition divides_b : nat \to nat \to bool \def @@ -287,7 +342,8 @@ intros 2.apply (nat_case n) [apply (nat_case m) [intro.apply divides_n_n |simplify.intros.apply False_ind. - apply not_eq_true_false.apply sym_eq.assumption + apply not_eq_true_false.apply sym_eq. + assumption ] |intros. apply divides_b_true_to_divides1 @@ -345,6 +401,22 @@ elim (divides_b n m).reflexivity. absurd (n \divides m).assumption.assumption. qed. +theorem divides_to_divides_b_true1 : \forall n,m:nat. +O < m \to n \divides m \to divides_b n m = true. +intro. +elim (le_to_or_lt_eq O n (le_O_n n)) + [apply divides_to_divides_b_true + [assumption|assumption] + |apply False_ind. + rewrite < H in H2. + elim H2. + simplify in H3. + apply (not_le_Sn_O O). + rewrite > H3 in H1. + assumption + ] +qed. + theorem not_divides_to_divides_b_false: \forall n,m:nat. O < n \to \lnot(n \divides m) \to (divides_b n m) = false. intros. @@ -357,6 +429,18 @@ absurd (n \divides m).assumption.assumption. reflexivity. qed. +theorem divides_b_div_true: +\forall d,n. O < n \to + divides_b d n = true \to divides_b (n/d) n = true. +intros. +apply divides_to_divides_b_true1 + [assumption + |apply divides_div. + apply divides_b_true_to_divides. + assumption + ] +qed. + theorem divides_b_true_to_lt_O: \forall n,m. O < n \to divides_b m n = true \to O < m. intros. elim (le_to_or_lt_eq ? ? (le_O_n m)) @@ -453,6 +537,11 @@ theorem prime_to_lt_O: \forall p. prime p \to O < p. intros.elim H.apply lt_to_le.assumption. qed. +theorem prime_to_lt_SO: \forall p. prime p \to S O < p. +intros.elim H. +assumption. +qed. + (* smallest factor *) definition smallest_factor : nat \to nat \def \lambda n:nat.