X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Farithmetics%2Fnat.ma;h=25745e370c19d3ed3072e525630234461c6a5725;hb=63047f8ff8ef477ac32939985b0b41b70e918054;hp=b6683b267801bac94d220ad5ca573ac644eaf1a5;hpb=8899a3f240f62633f4df58b2ee358fa285a82d1d;p=helm.git diff --git a/helm/software/matita/nlibrary/arithmetics/nat.ma b/helm/software/matita/nlibrary/arithmetics/nat.ma index b6683b267..25745e370 100644 --- a/helm/software/matita/nlibrary/arithmetics/nat.ma +++ b/helm/software/matita/nlibrary/arithmetics/nat.ma @@ -76,9 +76,9 @@ ntheorem nat_elim2 : #R; #ROn; #RSO; #RSS; #n; nelim n;//; #n0; #Rn0m; #m; ncases m;/2/; nqed. -ntheorem decidable_eq_nat : \forall n,m:nat.decidable (n=m). +ntheorem decidable_eq_nat : ∀n,m:nat.decidable (n=m). napply nat_elim2; #n; - ##[ ncases n; /2/; + ##[ ncases n; /3/; ##| /3/; ##| #m; #Hind; ncases Hind; /3/; ##] @@ -112,7 +112,7 @@ ntheorem plus_Sn_m1: ∀n,m:nat. S m + n = n + S m. #n; nelim n; nnormalize; //; nqed. *) -(* +(* deleterio ntheorem plus_n_SO : ∀n:nat. S n = n+S O. //; nqed. *) @@ -220,6 +220,9 @@ interpretation "natural 'less than'" 'lt x y = (lt x y). interpretation "natural 'not less than'" 'nless x y = (Not (lt x y)). +(* nlemma eq_lt: ∀n,m. (n < m) = (S n ≤ m). +//; nqed. *) + ndefinition ge: nat \to nat \to Prop \def \lambda n,m:nat.m \leq n. @@ -240,8 +243,9 @@ nqed. ntheorem trans_le: \forall n,m,p:nat. n \leq m \to m \leq p \to n \leq p \def transitive_le. *) -ntheorem transitive_lt: transitive nat lt. -#a; #b; #c; #ltab; #ltbc;nelim ltbc;/2/;nqed. + +naxiom transitive_lt: transitive nat lt. +(* #a; #b; #c; #ltab; #ltbc;nelim ltbc;/2/;nqed.*) (* theorem trans_lt: \forall n,m,p:nat. lt n m \to lt m p \to lt n p @@ -259,13 +263,18 @@ ntheorem le_n_Sn : ∀n:nat. n ≤ S n. ntheorem le_pred_n : ∀n:nat. pred n ≤ n. #n; nelim n; //; nqed. +(* XXX global problem *) +nlemma my_trans_le : ∀x,y,z:nat.x ≤ y → y ≤ z → x ≤ z. +napply transitive_le. +nqed. + ntheorem monotonic_pred: monotonic ? le pred. #n; #m; #lenm; nelim lenm; /2/; nqed. ntheorem le_S_S_to_le: ∀n,m:nat. S n ≤ S m → n ≤ m. -/2/; nqed. +(* XXX *) nletin hint ≝ monotonic. /2/; nqed. -ntheorem lt_S_S_to_lt: ∀n,m. S n < S m \to n < m. +ntheorem lt_S_S_to_lt: ∀n,m. S n < S m → n < m. /2/; nqed. ntheorem lt_to_lt_S_S: ∀n,m. n < m → S n < S m. @@ -284,15 +293,17 @@ ntheorem not_le_to_not_le_S_S: ∀ n,m:nat. n ≰ m → S n ≰ S m. ntheorem not_le_S_S_to_not_le: ∀ n,m:nat. S n ≰ S m → n ≰ m. /3/; nqed. +naxiom decidable_le: ∀n,m. decidable (n≤m). +(* ntheorem decidable_le: ∀n,m. decidable (n≤m). -napply nat_elim2; #n; /2/; -#m; #dec; ncases dec;/3/; nqed. +napply nat_elim2; #n; /3/; +#m; #dec; ncases dec;/4/; nqed. *) ntheorem decidable_lt: ∀n,m. decidable (n < m). #n; #m; napply decidable_le ; nqed. ntheorem not_le_Sn_n: ∀n:nat. S n ≰ n. -#n; nelim n; /2/; nqed. +#n; nelim n; /3/; nqed. ntheorem lt_S_to_le: ∀n,m:nat. n < S m → n ≤ m. /2/; nqed. @@ -301,7 +312,7 @@ ntheorem not_le_to_lt: ∀n,m. n ≰ m → m < n. napply nat_elim2; #n; ##[#abs; napply False_ind;/2/; ##|/2/; - ##|#m;#Hind;#HnotleSS; napply lt_to_lt_S_S;/3/; + ##|#m;#Hind;#HnotleSS; napply lt_to_lt_S_S;/4/; ##] nqed. @@ -310,7 +321,8 @@ ntheorem lt_to_not_le: ∀n,m. n < m → m ≰ n. ntheorem not_lt_to_le: ∀n,m:nat. n ≮ m → m ≤ n. #n; #m; #Hnlt; napply lt_S_to_le; -(* something strange here: /2/ fails *) +(* something strange here: /2/ fails: + we need an extra depths for unfolding not *) napply not_le_to_lt; napply Hnlt; nqed. ntheorem le_to_not_lt: ∀n,m:nat. n ≤ m → m ≮ n. @@ -427,9 +439,9 @@ ntheorem le_n_Sm_elim : ∀n,m:nat.n ≤ S m → (* le and eq *) ntheorem le_to_le_to_eq: ∀n,m. n ≤ m → m ≤ n → n = m. -napply nat_elim2; /3/; nqed. +napply nat_elim2; /4/; nqed. -ntheorem lt_O_S : \forall n:nat. O < S n. +ntheorem lt_O_S : ∀n:nat. O < S n. /2/; nqed. (* @@ -528,25 +540,27 @@ apply le_to_or_lt_eq.apply H6. qed. *) -(******************* monotonicity ******************************) +(*********************** monotonicity ***************************) ntheorem monotonic_le_plus_r: ∀n:nat.monotonic nat le (λm.n + m). #n; #a; #b; nelim n; nnormalize; //; #m; #H; #leab;napply le_S_S; /2/; nqed. +(* ntheorem le_plus_r: ∀p,n,m:nat. n ≤ m → p + n ≤ p + m -≝ monotonic_le_plus_r. +≝ monotonic_le_plus_r. *) ntheorem monotonic_le_plus_l: ∀m:nat.monotonic nat le (λn.n + m). /2/; nqed. +(* ntheorem le_plus_l: \forall p,n,m:nat. n \le m \to n + p \le m + p -\def monotonic_le_plus_l. +\def monotonic_le_plus_l. *) ntheorem le_plus: ∀n1,n2,m1,m2:nat. n1 ≤ n2 \to m1 ≤ m2 → n1 + m1 ≤ n2 + m2. -#n1; #n2; #m1; #m2; #len; #lem; napply transitive_le; +#n1; #n2; #m1; #m2; #len; #lem; napply (transitive_le ? (n1+m2)); /2/; nqed. ntheorem le_plus_n :∀n,m:nat. m ≤ n + m. @@ -559,88 +573,661 @@ ntheorem eq_plus_to_le: ∀n,m,p:nat.n=m+p → m ≤ n. //; nqed. ntheorem le_plus_to_le: ∀a,n,m. a + n ≤ a + m → n ≤ m. -#a; nelim a; /3/; nqed. - -(* times -theorem monotonic_le_times_r: -\forall n:nat.monotonic nat le (\lambda m. n * m). -simplify.intros.elim n. -simplify.apply le_O_n. -simplify.apply le_plus. -assumption. -assumption. -qed. +#a; nelim a; nnormalize; /3/; nqed. -theorem le_times_r: \forall p,n,m:nat. n \le m \to p*n \le p*m -\def monotonic_le_times_r. +ntheorem le_plus_to_le_r: ∀a,n,m. n + a ≤ m +a → n ≤ m. +/2/; nqed. -theorem monotonic_le_times_l: -\forall m:nat.monotonic nat le (\lambda n.n*m). -simplify.intros. -rewrite < sym_times.rewrite < (sym_times m). -apply le_times_r.assumption. -qed. +(* plus & lt *) + +ntheorem monotonic_lt_plus_r: +∀n:nat.monotonic nat lt (λm.n+m). +/2/; nqed. + +(* +variant lt_plus_r: \forall n,p,q:nat. p < q \to n + p < n + q \def +monotonic_lt_plus_r. *) + +ntheorem monotonic_lt_plus_l: +∀n:nat.monotonic nat lt (λm.m+n). +/2/;nqed. + +(* +variant lt_plus_l: \forall n,p,q:nat. p < q \to p + n < q + n \def +monotonic_lt_plus_l. *) + +ntheorem lt_plus: ∀n,m,p,q:nat. n < m → p < q → n + p < m + q. +#n; #m; #p; #q; #ltnm; #ltpq; +napply (transitive_lt ? (n+q));/2/; nqed. +ntheorem lt_plus_to_lt_l :∀n,p,q:nat. p+n < q+n → p H2 in H1. + rewrite > (S_pred a) in H1 + [ apply False_ind. + apply (eq_to_not_lt O ((S (pred a))*(S m))) + [ apply sym_eq. + assumption + | apply lt_O_times_S_S + ] + | assumption + ] +] +qed. -theorem le_times_n: \forall n,m:nat.(S O) \le n \to m \le n*m. -intros.elim H.simplify. -elim (plus_n_O ?).apply le_n. -simplify.rewrite < sym_plus.apply le_plus_n. +theorem O_lt_times_to_O_lt: \forall a,c:nat. +O \lt (a * c) \to O \lt a. +intros. +apply (nat_case1 a) +[ intros. + rewrite > H1 in H. + simplify in H. + assumption +| intros. + apply lt_O_S +] qed. -theorem le_times_to_le: -\forall a,n,m. S O \le a \to a * n \le a * m \to n \le m. -intro. -apply nat_elim2;intros - [apply le_O_n +lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m. +intros. +elim (le_to_or_lt_eq O ? (le_O_n m)) + [assumption |apply False_ind. - rewrite < times_n_O in H1. - generalize in match H1. - apply (lt_O_n_elim ? H). - intros. - simplify in H2. - apply (le_to_not_lt ? ? H2). - apply lt_O_S - |apply le_S_S. - apply H + rewrite < H1 in H. + rewrite < times_n_O in H. + apply (not_le_Sn_O ? H) + ] +qed. *) + +(* +ntheorem monotonic_lt_times_r: +∀n:nat.monotonic nat lt (λm.(S n)*m). +/2/; +simplify. +intros.elim n. +simplify.rewrite < plus_n_O.rewrite < plus_n_O.assumption. +apply lt_plus.assumption.assumption. +qed. *) + +ntheorem monotonic_lt_times_l: + ∀c:nat. O < c → monotonic nat lt (λt.(t*c)). +#c; #posc; #n; #m; #ltnm; +nelim ltnm; nnormalize; + ##[napplyS monotonic_lt_plus_l;//; + ##|#a; #_; #lt1; napply (transitive_le ??? lt1);//; + ##] +nqed. + +ntheorem monotonic_lt_times_r: + ∀c:nat. O < c → monotonic nat lt (λt.(c*t)). +(* /2/ lentissimo *) +#c; #posc; #n; #m; #ltnm; +(* why?? napplyS (monotonic_lt_times_l c posc n m ltnm); *) +nrewrite > (symmetric_times c n); +nrewrite > (symmetric_times c m); +napply monotonic_lt_times_l;//; +nqed. + +ntheorem lt_to_le_to_lt_times: +∀n,m,p,q:nat. n < m → p ≤ q → O < q → n*p < m*q. +#n; #m; #p; #q; #ltnm; #lepq; #posq; +napply (le_to_lt_to_lt ? (n*q)); + ##[napply monotonic_le_times_r;//; + ##|napply monotonic_lt_times_l;//; + ##] +nqed. + +ntheorem lt_times:∀n,m,p,q:nat. n nat_compare_n_n.reflexivity. +intro.apply nat_compare_elim.intro. +absurd (p minus_Sn_m. +apply le_S.assumption. +apply lt_to_le.assumption. qed. -theorem le_S_times_SSO: \forall n,m.O < m \to -n \le m \to S n \le (S(S O))*m. +theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)). intros. -simplify. -rewrite > plus_n_O. -simplify.rewrite > plus_n_Sm. -apply le_plus - [assumption - |rewrite < plus_n_O. - assumption - ] +apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))). +intro.elim n1.simplify.apply le_n_Sn. +simplify.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n_Sn. +intros.simplify.apply H. +qed. + +theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. +intros 3.intro. +(* autobatch *) +(* end auto($Revision: 9739 $) proof: TIME=1.33 SIZE=100 DEPTH=100 *) +apply (trans_le (m-n) (S (m-(S n))) p). +apply minus_le_S_minus_S. +assumption. +qed. + +theorem le_minus_m: \forall n,m:nat. n-m \leq n. +intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)). +intros.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n. +intros.simplify.apply le_S.assumption. +qed. + +theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n. +intros.apply (lt_O_n_elim n H).intro. +apply (lt_O_n_elim m H1).intro. +simplify.unfold lt.apply le_S_S.apply le_minus_m. +qed. + +theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m. +intros 2. +apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)). +intros.apply le_O_n. +simplify.intros. assumption. +simplify.intros.apply le_S_S.apply H.assumption. qed. -(*0 and times *) -theorem O_lt_const_to_le_times_const: \forall a,c:nat. -O \lt c \to a \le a*c. +*) + +(* monotonicity and galois *) + +ntheorem monotonic_le_minus_l: +∀p,q,n:nat. q ≤ p → q-n ≤ p-n. +napply nat_elim2; #p; #q; + ##[#lePO; napply (le_n_O_elim ? lePO);//; + ##|//; + ##|#Hind; #n; ncases n; + ##[//; + ##|#a; #leSS; napply Hind; /2/; + ##] + ##] +nqed. + +ntheorem le_minus_to_plus: ∀n,m,p. n-m ≤ p → n≤ p+m. +#n; #m; #p; #lep; +napply transitive_le; + ##[##|napply le_plus_minus_m_m + ##|napply monotonic_le_plus_l;//; + ##] +nqed. + +ntheorem le_plus_to_minus: ∀n,m,p. n ≤ p+m → n-m ≤ p. +#n; #m; #p; #lep; +(* bello *) +napplyS monotonic_le_minus_l;//; +nqed. + +ntheorem monotonic_le_minus_r: +∀p,q,n:nat. q ≤ p → n-p ≤ n-q. +#p; #q; #n; #lepq; +napply le_plus_to_minus; +napply (transitive_le ??? (le_plus_minus_m_m ? q));/2/; +nqed. + +(*********************** boolean arithmetics ********************) +include "basics/bool.ma". + +nlet rec eqb n m ≝ +match n with + [ O ⇒ match m with [ O ⇒ true | S q ⇒ false] + | S p ⇒ match m with [ O ⇒ false | S q ⇒ eqb p q] + ]. + +(* +ntheorem eqb_to_Prop: ∀n,m:nat. +match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m]. intros. -rewrite > (times_n_SO a) in \vdash (? % ?). -apply le_times -[ apply le_n -| assumption -] -qed. *) \ No newline at end of file +apply (nat_elim2 +(\lambda n,m:nat.match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m])). +intro.elim n1. +simplify.reflexivity. +simplify.apply not_eq_O_S. +intro. +simplify.unfold Not. +intro. apply (not_eq_O_S n1).apply sym_eq.assumption. +intros.simplify. +generalize in match H. +elim ((eqb n1 m1)). +simplify.apply eq_f.apply H1. +simplify.unfold Not.intro.apply H1.apply inj_S.assumption. +qed. +*) + +ntheorem eqb_elim : ∀ n,m:nat.∀ P:bool → Prop. +(n=m → (P true)) → (n ≠ m → (P false)) → (P (eqb n m)). +napply nat_elim2; + ##[#n; ncases n; nnormalize; /3/; + ##|nnormalize; /3/; + ##|nnormalize; /4/; + ##] +nqed. + +ntheorem eqb_n_n: ∀n. eqb n n = true. +#n; nelim n; nnormalize; //. +nqed. + +ntheorem eqb_true_to_eq: ∀n,m:nat. eqb n m = true → n = m. +#n; #m; napply (eqb_elim n m);//; +#_; #abs; napply False_ind; /2/; +nqed. + +ntheorem eqb_false_to_not_eq: ∀n,m:nat. eqb n m = false → n ≠ m. +#n; #m; napply (eqb_elim n m);/2/; +nqed. + +ntheorem eq_to_eqb_true: ∀n,m:nat. + n = m → eqb n m = true. +//; nqed. + +ntheorem not_eq_to_eqb_false: ∀n,m:nat. + n ≠ m → eqb n m = false. +#n; #m; #noteq; +nelim (true_or_false (eqb n m)); //; +#Heq; napply False_ind; napply noteq;/2/; +nqed. + +nlet rec leb n m ≝ +match n with + [ O ⇒ true + | (S p) ⇒ + match m with + [ O ⇒ false + | (S q) ⇒ leb p q]]. + +ntheorem leb_elim: ∀n,m:nat. ∀P:bool → Prop. +(n ≤ m → P true) → (n ≰ m → P false) → P (leb n m). +napply nat_elim2; nnormalize; + ##[/2/ + ##| /3/; + ##|#n; #m; #Hind; #P; #Pt; #Pf; napply Hind; + ##[#lenm; napply Pt; napply le_S_S;//; + ##|#nlenm; napply Pf; #leSS; /3/; + ##] + ##] +nqed. + +ntheorem leb_true_to_le:∀n,m.leb n m = true → n ≤ m. +#n; #m; napply leb_elim; + ##[//; + ##|#_; #abs; napply False_ind; /2/; + ##] +nqed. + +ntheorem leb_false_to_not_le:∀n,m. + leb n m = false → n ≰ m. +#n; #m; napply leb_elim; + ##[#_; #abs; napply False_ind; /2/; + ##|/2/; + ##] +nqed. + +ntheorem le_to_leb_true: ∀n,m. n ≤ m → leb n m = true. +#n; #m; napply leb_elim; //; +#H; #H1; napply False_ind; /2/; +nqed. + +ntheorem lt_to_leb_false: ∀n,m. m < n → leb n m = false. +#n; #m; napply leb_elim; //; +#H; #H1; napply False_ind; /2/; +nqed. + +(* serve anche ltb? +ndefinition ltb ≝λn,m. leb (S n) m. + +ntheorem ltb_elim: ∀n,m:nat. ∀P:bool → Prop. +(n < m → P true) → (n ≮ m → P false) → P (ltb n m). +#n; #m; #P; #Hlt; #Hnlt; +napply leb_elim; /3/; nqed. + +ntheorem ltb_true_to_lt:∀n,m.ltb n m = true → n < m. +#n; #m; #Hltb; napply leb_true_to_le; nassumption; +nqed. + +ntheorem ltb_false_to_not_lt:∀n,m. + ltb n m = false → n ≮ m. +#n; #m; #Hltb; napply leb_false_to_not_le; nassumption; +nqed. + +ntheorem lt_to_ltb_true: ∀n,m. n < m → ltb n m = true. +#n; #m; #Hltb; napply le_to_leb_true; nassumption; +nqed. + +ntheorem le_to_ltb_false: ∀n,m. m \le n → ltb n m = false. +#n; #m; #Hltb; napply lt_to_leb_false; /2/; +nqed. *) + +ninductive compare : Type[0] ≝ +| LT : compare +| EQ : compare +| GT : compare. + +ndefinition compare_invert: compare → compare ≝ + λc.match c with + [ LT ⇒ GT + | EQ ⇒ EQ + | GT ⇒ LT ]. + +nlet rec nat_compare n m: compare ≝ +match n with +[ O ⇒ match m with + [ O ⇒ EQ + | (S q) ⇒ LT ] +| S p ⇒ match m with + [ O ⇒ GT + | S q ⇒ nat_compare p q]]. + +ntheorem nat_compare_n_n: ∀n. nat_compare n n = EQ. +#n;nelim n +##[// +##|#m;#IH;nnormalize;//] +nqed. + +ntheorem nat_compare_S_S: ∀n,m:nat.nat_compare n m = nat_compare (S n) (S m). +//; +nqed. + +ntheorem nat_compare_pred_pred: + ∀n,m.O < n → O < m → nat_compare n m = nat_compare (pred n) (pred m). +#n;#m;#Hn;#Hm; +napply (lt_O_n_elim n Hn); +napply (lt_O_n_elim m Hm); +#p;#q;//; +nqed. + +ntheorem nat_compare_to_Prop: + ∀n,m.match (nat_compare n m) with + [ LT ⇒ n < m + | EQ ⇒ n = m + | GT ⇒ m < n ]. +#n;#m; +napply (nat_elim2 (λn,m.match (nat_compare n m) with + [ LT ⇒ n < m + | EQ ⇒ n = m + | GT ⇒ m < n ]) ?????) (* FIXME: don't want to put all these ?, especially when … does not work! *) +##[##1,2:#n1;ncases n1;//; +##|#n1;#m1;nnormalize;ncases (nat_compare n1 m1); + ##[##1,3:nnormalize;#IH;napply le_S_S;//; + ##|nnormalize;#IH;nrewrite > IH;//] +nqed. + +ntheorem nat_compare_n_m_m_n: + ∀n,m:nat.nat_compare n m = compare_invert (nat_compare m n). +#n;#m; +napply (nat_elim2 (λn,m. nat_compare n m = compare_invert (nat_compare m n))) +##[##1,2:#n1;ncases n1;//; +##|#n1;#m1;#IH;nnormalize;napply IH] +nqed. + +ntheorem nat_compare_elim : + ∀n,m. ∀P:compare → Prop. + (n < m → P LT) → (n=m → P EQ) → (m < n → P GT) → P (nat_compare n m). +#n;#m;#P;#Hlt;#Heq;#Hgt; +ncut (match (nat_compare n m) with + [ LT ⇒ n < m + | EQ ⇒ n=m + | GT ⇒ m < n] → + P (nat_compare n m)) +##[ncases (nat_compare n m); + ##[napply Hlt + ##|napply Heq + ##|napply Hgt] +##|#Hcut;napply Hcut;//; +nqed. + +ninductive cmp_cases (n,m:nat) : CProp[0] ≝ + | cmp_le : n ≤ m → cmp_cases n m + | cmp_gt : m < n → cmp_cases n m. + +ntheorem lt_to_le : ∀n,m:nat. n < m → n ≤ m. +#n;#m;#H;nelim H +##[// +##|/2/] +nqed. + +nlemma cmp_nat: ∀n,m.cmp_cases n m. +#n;#m; nlapply (nat_compare_to_Prop n m); +ncases (nat_compare n m);#H +##[@;napply lt_to_le;// +##|@;// +##|@2;//] +nqed.