X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Farithmetics%2Fnat.ma;h=d4ba1135e241626f551b5bca4b55c0a43f7d01e5;hb=a4cd6a8a1d6a008518c12daca794b9e811c1dee5;hp=b6683b267801bac94d220ad5ca573ac644eaf1a5;hpb=8899a3f240f62633f4df58b2ee358fa285a82d1d;p=helm.git diff --git a/helm/software/matita/nlibrary/arithmetics/nat.ma b/helm/software/matita/nlibrary/arithmetics/nat.ma index b6683b267..d4ba1135e 100644 --- a/helm/software/matita/nlibrary/arithmetics/nat.ma +++ b/helm/software/matita/nlibrary/arithmetics/nat.ma @@ -12,12 +12,11 @@ (* *) (**************************************************************************) -(* include "higher_order_defs/functions.ma". *) include "hints_declaration.ma". include "basics/functions.ma". -include "basics/eq.ma". +include "basics/eq.ma". -ninductive nat : Type[0] ≝ +ninductive nat : Type ≝ | O : nat | S : nat → nat. @@ -36,7 +35,7 @@ ncoercion nat_to_pos: ∀n:nat. n ≠0 →pos ≝ mk_pos on *) ndefinition pred ≝ - λn. match n with [ O ⇒ O | (S p) ⇒ p]. + λn. match n with [ O ⇒ O | S p ⇒ p]. ntheorem pred_Sn : ∀n. n = pred (S n). //; nqed. @@ -49,18 +48,18 @@ ntheorem inj_S : \forall n,m:nat.(S n)=(S m) \to n=m. //. nqed. *) ntheorem not_eq_S: ∀n,m:nat. n ≠ m → S n ≠ S m. -/2/; nqed. +/3/; nqed. ndefinition not_zero: nat → Prop ≝ λn: nat. match n with [ O ⇒ False | (S p) ⇒ True ]. ntheorem not_eq_O_S : ∀n:nat. O ≠ S n. -#n; #eqOS; nchange with (not_zero O); nrewrite > eqOS; //. +#n; napply nmk; #eqOS; nchange with (not_zero O); nrewrite > eqOS; //. nqed. -ntheorem not_eq_n_Sn : ∀n:nat. n ≠ S n. -#n; nelim n; /2/; nqed. +ntheorem not_eq_n_Sn: ∀n:nat. n ≠ S n. +#n; nelim n;/2/; nqed. ntheorem nat_case: ∀n:nat.∀P:nat → Prop. @@ -76,11 +75,11 @@ ntheorem nat_elim2 : #R; #ROn; #RSO; #RSS; #n; nelim n;//; #n0; #Rn0m; #m; ncases m;/2/; nqed. -ntheorem decidable_eq_nat : \forall n,m:nat.decidable (n=m). +ntheorem decidable_eq_nat : ∀n,m:nat.decidable (n=m). napply nat_elim2; #n; ##[ ncases n; /2/; ##| /3/; - ##| #m; #Hind; ncases Hind; /3/; + ##| #m; #Hind; ncases Hind;/3/; ##] nqed. @@ -112,9 +111,10 @@ ntheorem plus_Sn_m1: ∀n,m:nat. S m + n = n + S m. #n; nelim n; nnormalize; //; nqed. *) -(* -ntheorem plus_n_SO : ∀n:nat. S n = n+S O. -//; nqed. *) +(* deleterio? +ntheorem plus_n_1 : ∀n:nat. S n = n+1. +//; nqed. +*) ntheorem symmetric_plus: symmetric ? plus. #n; nelim n; nnormalize; //; nqed. @@ -123,7 +123,7 @@ ntheorem associative_plus : associative nat plus. #n; nelim n; nnormalize; //; nqed. ntheorem assoc_plus1: ∀a,b,c. c + (b + a) = b + c + a. -//; nqed. +//; nqed. ntheorem injective_plus_r: ∀n:nat.injective nat nat (λm.n+m). #n; nelim n; nnormalize; /3/; nqed. @@ -159,7 +159,7 @@ ntheorem times_n_Sm : ∀n,m:nat. n+(n*m) = n*(S m). #n; nelim n; nnormalize; //; nqed. ntheorem symmetric_times : symmetric nat times. -#n; nelim n; nnormalize; //; nqed. +#n; nelim n; nnormalize; //; nqed. (* variant sym_times : \forall n,m:nat. n*m = m*n \def symmetric_times. *) @@ -167,9 +167,9 @@ symmetric_times. *) ntheorem distributive_times_plus : distributive nat times plus. #n; nelim n; nnormalize; //; nqed. -ntheorem distributive_times_plus_r: -\forall a,b,c:nat. (b+c)*a = b*a + c*a. -//; nqed. +ntheorem distributive_times_plus_r : + ∀a,b,c:nat. (b+c)*a = b*a + c*a. +//; nqed. ntheorem associative_times: associative nat times. #n; nelim n; nnormalize; //; nqed. @@ -220,13 +220,16 @@ interpretation "natural 'less than'" 'lt x y = (lt x y). interpretation "natural 'not less than'" 'nless x y = (Not (lt x y)). -ndefinition ge: nat \to nat \to Prop \def -\lambda n,m:nat.m \leq n. +(* nlemma eq_lt: ∀n,m. (n < m) = (S n ≤ m). +//; nqed. *) + +ndefinition ge: nat → nat → Prop ≝ +λn,m:nat.m ≤ n. interpretation "natural 'greater or equal to'" 'geq x y = (ge x y). -ndefinition gt: nat \to nat \to Prop \def -\lambda n,m:nat.m H2 in H1. + rewrite > (S_pred a) in H1 + [ apply False_ind. + apply (eq_to_not_lt O ((S (pred a))*(S m))) + [ apply sym_eq. + assumption + | apply lt_O_times_S_S + ] + | assumption + ] +] +qed. -theorem le_times_n: \forall n,m:nat.(S O) \le n \to m \le n*m. -intros.elim H.simplify. -elim (plus_n_O ?).apply le_n. -simplify.rewrite < sym_plus.apply le_plus_n. +theorem O_lt_times_to_O_lt: \forall a,c:nat. +O \lt (a * c) \to O \lt a. +intros. +apply (nat_case1 a) +[ intros. + rewrite > H1 in H. + simplify in H. + assumption +| intros. + apply lt_O_S +] qed. -theorem le_times_to_le: -\forall a,n,m. S O \le a \to a * n \le a * m \to n \le m. -intro. -apply nat_elim2;intros - [apply le_O_n +lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m. +intros. +elim (le_to_or_lt_eq O ? (le_O_n m)) + [assumption |apply False_ind. - rewrite < times_n_O in H1. - generalize in match H1. - apply (lt_O_n_elim ? H). - intros. - simplify in H2. - apply (le_to_not_lt ? ? H2). - apply lt_O_S - |apply le_S_S. - apply H + rewrite < H1 in H. + rewrite < times_n_O in H. + apply (not_le_Sn_O ? H) + ] +qed. *) + +(* +ntheorem monotonic_lt_times_r: +∀n:nat.monotonic nat lt (λm.(S n)*m). +/2/; +simplify. +intros.elim n. +simplify.rewrite < plus_n_O.rewrite < plus_n_O.assumption. +apply lt_plus.assumption.assumption. +qed. *) + +ntheorem monotonic_lt_times_l: + ∀c:nat. O < c → monotonic nat lt (λt.(t*c)). +#c; #posc; #n; #m; #ltnm; +nelim ltnm; nnormalize; + ##[/2/; + ##|#a; #_; #lt1; napply (transitive_le ??? lt1);//; + ##] +nqed. + +ntheorem monotonic_lt_times_r: + ∀c:nat. O < c → monotonic nat lt (λt.(c*t)). +/2/; nqed. + +ntheorem lt_to_le_to_lt_times: +∀n,m,p,q:nat. n < m → p ≤ q → O < q → n*p < m*q. +#n; #m; #p; #q; #ltnm; #lepq; #posq; +napply (le_to_lt_to_lt ? (n*q)); + ##[napply monotonic_le_times_r;//; + ##|napply monotonic_lt_times_l;//; + ##] +nqed. + +ntheorem lt_times:∀n,m,p,q:nat. n nat_compare_n_n.reflexivity. +intro.apply nat_compare_elim.intro. +absurd (p minus_Sn_m. +apply le_S.assumption. +apply lt_to_le.assumption. qed. -theorem le_S_times_SSO: \forall n,m.O < m \to -n \le m \to S n \le (S(S O))*m. +theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)). intros. -simplify. -rewrite > plus_n_O. -simplify.rewrite > plus_n_Sm. -apply le_plus - [assumption - |rewrite < plus_n_O. - assumption - ] +apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))). +intro.elim n1.simplify.apply le_n_Sn. +simplify.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n_Sn. +intros.simplify.apply H. qed. -(*0 and times *) -theorem O_lt_const_to_le_times_const: \forall a,c:nat. -O \lt c \to a \le a*c. + +theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. +intros 3.intro. +(* autobatch *) +(* end auto($Revision: 9739 $) proof: TIME=1.33 SIZE=100 DEPTH=100 *) +apply (trans_le (m-n) (S (m-(S n))) p). +apply minus_le_S_minus_S. +assumption. +qed. + +theorem le_minus_m: \forall n,m:nat. n-m \leq n. +intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)). +intros.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n. +intros.simplify.apply le_S.assumption. +qed. + +theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n. +intros.apply (lt_O_n_elim n H).intro. +apply (lt_O_n_elim m H1).intro. +simplify.unfold lt.apply le_S_S.apply le_minus_m. +qed. + +theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m. +intros 2. +apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)). +intros.apply le_O_n. +simplify.intros. assumption. +simplify.intros.apply le_S_S.apply H.assumption. +qed. +*) + +(* monotonicity and galois *) + +ntheorem monotonic_le_minus_l: +∀p,q,n:nat. q ≤ p → q-n ≤ p-n. +napply nat_elim2; #p; #q; + ##[#lePO; napply (le_n_O_elim ? lePO);//; + ##|//; + ##|#Hind; #n; ncases n; + ##[//; + ##|#a; #leSS; napply Hind; /2/; + ##] + ##] +nqed. + +ntheorem le_minus_to_plus: ∀n,m,p. n-m ≤ p → n≤ p+m. +#n; #m; #p; #lep; +napply transitive_le; + ##[##|napply le_plus_minus_m_m + ##|napply monotonic_le_plus_l;//; + ##] +nqed. + +ntheorem le_plus_to_minus: ∀n,m,p. n ≤ p+m → n-m ≤ p. +#n; #m; #p; #lep; +(* bello *) +napplyS monotonic_le_minus_l;//; +(* /2/; *) +nqed. + +ntheorem monotonic_le_minus_r: +∀p,q,n:nat. q ≤ p → n-p ≤ n-q. +#p; #q; #n; #lepq; +napply le_plus_to_minus; +napply (transitive_le ??? (le_plus_minus_m_m ? q));/2/; +nqed. + +(*********************** boolean arithmetics ********************) +include "basics/bool.ma". + +nlet rec eqb n m ≝ +match n with + [ O ⇒ match m with [ O ⇒ true | S q ⇒ false] + | S p ⇒ match m with [ O ⇒ false | S q ⇒ eqb p q] + ]. + +(* +ntheorem eqb_to_Prop: ∀n,m:nat. +match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m]. intros. -rewrite > (times_n_SO a) in \vdash (? % ?). -apply le_times -[ apply le_n -| assumption -] -qed. *) \ No newline at end of file +apply (nat_elim2 +(\lambda n,m:nat.match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m])). +intro.elim n1. +simplify.reflexivity. +simplify.apply not_eq_O_S. +intro. +simplify.unfold Not. +intro. apply (not_eq_O_S n1).apply sym_eq.assumption. +intros.simplify. +generalize in match H. +elim ((eqb n1 m1)). +simplify.apply eq_f.apply H1. +simplify.unfold Not.intro.apply H1.apply inj_S.assumption. +qed. +*) + +ntheorem eqb_elim : ∀ n,m:nat.∀ P:bool → Prop. +(n=m → (P true)) → (n ≠ m → (P false)) → (P (eqb n m)). +napply nat_elim2; + ##[#n; ncases n; nnormalize; /3/; + ##|nnormalize; /3/; + ##|nnormalize; /4/; + ##] +nqed. + +ntheorem eqb_n_n: ∀n. eqb n n = true. +#n; nelim n; nnormalize; //. +nqed. + +ntheorem eqb_true_to_eq: ∀n,m:nat. eqb n m = true → n = m. +#n; #m; napply (eqb_elim n m);//; +#_; #abs; napply False_ind; /2/; +nqed. + +ntheorem eqb_false_to_not_eq: ∀n,m:nat. eqb n m = false → n ≠ m. +#n; #m; napply (eqb_elim n m);/2/; +nqed. + +ntheorem eq_to_eqb_true: ∀n,m:nat. + n = m → eqb n m = true. +//; nqed. + +ntheorem not_eq_to_eqb_false: ∀n,m:nat. + n ≠ m → eqb n m = false. +#n; #m; #noteq; +napply eqb_elim;//; +#Heq; napply False_ind; /2/; +nqed. + +nlet rec leb n m ≝ +match n with + [ O ⇒ true + | (S p) ⇒ + match m with + [ O ⇒ false + | (S q) ⇒ leb p q]]. + +ntheorem leb_elim: ∀n,m:nat. ∀P:bool → Prop. +(n ≤ m → P true) → (n ≰ m → P false) → P (leb n m). +napply nat_elim2; nnormalize; + ##[/2/ + ##|/3/; + ##|#n; #m; #Hind; #P; #Pt; #Pf; napply Hind; + ##[#lenm; napply Pt; napply le_S_S;//; + ##|#nlenm; napply Pf; /2/; + ##] + ##] +nqed. + +ntheorem leb_true_to_le:∀n,m.leb n m = true → n ≤ m. +#n; #m; napply leb_elim; + ##[//; + ##|#_; #abs; napply False_ind; /2/; + ##] +nqed. + +ntheorem leb_false_to_not_le:∀n,m. + leb n m = false → n ≰ m. +#n; #m; napply leb_elim; + ##[#_; #abs; napply False_ind; /2/; + ##|//; + ##] +nqed. + +ntheorem le_to_leb_true: ∀n,m. n ≤ m → leb n m = true. +#n; #m; napply leb_elim; //; +#H; #H1; napply False_ind; /2/; +nqed. + +ntheorem not_le_to_leb_false: ∀n,m. n ≰ m → leb n m = false. +#n; #m; napply leb_elim; //; +#H; #H1; napply False_ind; /2/; +nqed. + +ntheorem lt_to_leb_false: ∀n,m. m < n → leb n m = false. +/3/; nqed. + +(* serve anche ltb? +ndefinition ltb ≝λn,m. leb (S n) m. + +ntheorem ltb_elim: ∀n,m:nat. ∀P:bool → Prop. +(n < m → P true) → (n ≮ m → P false) → P (ltb n m). +#n; #m; #P; #Hlt; #Hnlt; +napply leb_elim; /3/; nqed. + +ntheorem ltb_true_to_lt:∀n,m.ltb n m = true → n < m. +#n; #m; #Hltb; napply leb_true_to_le; nassumption; +nqed. + +ntheorem ltb_false_to_not_lt:∀n,m. + ltb n m = false → n ≮ m. +#n; #m; #Hltb; napply leb_false_to_not_le; nassumption; +nqed. + +ntheorem lt_to_ltb_true: ∀n,m. n < m → ltb n m = true. +#n; #m; #Hltb; napply le_to_leb_true; nassumption; +nqed. + +ntheorem le_to_ltb_false: ∀n,m. m \le n → ltb n m = false. +#n; #m; #Hltb; napply lt_to_leb_false; /2/; +nqed. *) +