X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Foverlap%2Fo-algebra.ma;h=bf320c1e1f58051d41b61b8123338de371318e5c;hb=cb731a63dfd801c15047e0d18b644794ac63fe03;hp=eae842c44e150cf71d2a1dc8399da1e8f93f734d;hpb=8300e0de4b379e9ab9f2ce00d3f9e3d93c8bd943;p=helm.git diff --git a/helm/software/matita/nlibrary/overlap/o-algebra.ma b/helm/software/matita/nlibrary/overlap/o-algebra.ma index eae842c44..bf320c1e1 100644 --- a/helm/software/matita/nlibrary/overlap/o-algebra.ma +++ b/helm/software/matita/nlibrary/overlap/o-algebra.ma @@ -237,11 +237,15 @@ unification hint 0 ≔ P, Q, r; R ≟ (mk_unary_morphism1 … (or_f_minus …) (prop11 … (or_f_minus_morphism1 …))) (* ------------------------ *) ⊢ fun11 … R r ≡ or_f_minus P Q r. + +naxiom daemon : False. nlemma ORelation_eq_respects_leq_or_f_star_: ∀P,Q:OAlgebra.∀r,r':ORelation P Q. r=r' → ∀x. r* x ≤ r'* x. #P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *) + ncases daemon. + (* ngeneralize in match (. (or_prop1 P Q a' (a* x) x)^-1) in ⊢ %; #H; napply H; nchange with (or_f P Q a' (a* x) ≤ x); napply (. ?‡#) @@ -250,7 +254,7 @@ nlemma ORelation_eq_respects_leq_or_f_star_: nchange with (or_f P Q a' = or_f P Q a); napply (.= †e^-1); napply #] napply (. (or_prop1 …)); - napply oa_leq_refl. + napply oa_leq_refl.*) nqed. nlemma ORelation_eq3: @@ -277,6 +281,7 @@ nlemma ORelation_eq_respects_leq_or_f_minus_star_: ∀P,Q:OAlgebra.∀r,r':ORelation P Q. r=r' → ∀x. r⎻* x ≤ r'⎻* x. #P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *) + ncases daemon. (* ngeneralize in match (. (or_prop2 P Q a' (a⎻* x) x)^-1) in ⊢ %; #H; napply H; nchange with (or_f_minus P Q a' (a⎻* x) ≤ x); napply (. ?‡#) @@ -285,7 +290,7 @@ nlemma ORelation_eq_respects_leq_or_f_minus_star_: nchange with (a'⎻ = a⎻); napply (.= †e^-1); napply #] napply (. (or_prop2 …)); - napply oa_leq_refl. + napply oa_leq_refl.*) nqed. nlemma ORelation_eq4: @@ -303,39 +308,93 @@ ndefinition or_f_minus_star_morphism1: | napply ORelation_eq4] nqed. + unification hint 0 ≔ P, Q, r; R ≟ (mk_unary_morphism1 … (or_f_minus_star …) (prop11 … (or_f_minus_star_morphism1 …))) (* ------------------------ *) ⊢ fun11 … R r ≡ or_f_minus_star P Q r. + +ninductive one : Type[0] ≝ unit : one. + +ndefinition force : ∀S:Type[2]. S → ∀T:Type[2]. T → one → Type[2] ≝ + λS,s,T,t,lock. match lock with [ unit => S ]. + +ndefinition enrich_as : + ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one.force S s T t lock ≝ + λS,s,T,t,lock. match lock return λlock.match lock with [ unit ⇒ S ] + with [ unit ⇒ s ]. + +ncoercion enrich_as : ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one. force S s T t lock + ≝ enrich_as on t: ? to force ? ? ? ? ?. + +(* does not work here +nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. +#A; #B; #C; #f; #g; napply(f \circ g). +nqed.*) + +(* This precise hint does not leave spurious metavariables *) +unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B; + lock ≟ unit +(* --------------------------------------------------------------- *) ⊢ + (unary_morphism1 A C) + ≡ + (force (unary_morphism1 A C) (comp1_unary_morphisms A B C f g) + (carr1 A → carr1 C) (composition1 A B C f g) lock) + . + +(* This uniform hint opens spurious metavariables +unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B, X; + lock ≟ unit +(* --------------------------------------------------------------- *) ⊢ + (unary_morphism1 A C) + ≡ + (force (unary_morphism1 A C) X (carr1 A → carr1 C) (fun11 … X) lock) + . +*) + +nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. +#A; #B; #C; #f; #g; napply(f ∘ g). +nqed. -(*CSC: +(* + +ndefinition uffa: ∀A,B. ∀U: unary_morphism1 A B. (A → B) → CProp[0]. + #A;#B;#_;#_; napply True. +nqed. +ndefinition mk_uffa: ∀A,B.∀U: unary_morphism1 A B. ∀f: (A → B). uffa A B U f. + #A; #B; #U; #f; napply I. +nqed. + +ndefinition coerc_to_unary_morphism1: + ∀A,B. ∀U: unary_morphism1 A B. uffa A B U (fun11 … U) → unary_morphism1 A B. + #A; #B; #U; #_; nassumption. +nqed. + +ncheck (λA,B,C,f,g.coerc_to_unary_morphism1 ??? (mk_uffa ??? (composition1 A B C f g))). +*) ndefinition ORelation_composition : ∀P,Q,R. binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). #P; #Q; #R; @ [ #F; #G; @ - [ napply (G ∘ F); - | apply rule (G⎻* ∘ F⎻* ); - | apply (F* ∘ G* ); - | apply (F⎻ ∘ G⎻); - | intros; - change with ((G (F p) ≤ q) = (p ≤ (F* (G* q)))); - apply (.= (or_prop1 :?)); - apply (or_prop1 :?); - | intros; - change with ((F⎻ (G⎻ p) ≤ q) = (p ≤ (G⎻* (F⎻* q)))); - apply (.= (or_prop2 :?)); - apply or_prop2 ; - | intros; change with ((G (F (p)) >< q) = (p >< (F⎻ (G⎻ q)))); - apply (.= (or_prop3 :?)); - apply or_prop3; + [ napply (G ∘ F) (* napply (comp1_unary_morphisms … G F) (*CSC: was (G ∘ F);*) *) + | napply (G⎻* ∘ F⎻* ) (* napply (comp1_unary_morphisms … G⎻* F⎻* ) (*CSC: was (G⎻* ∘ F⎻* );*)*) + | napply (comp1_unary_morphisms … F* G* ) (*CSC: was (F* ∘ G* );*) + | napply (comp1_unary_morphisms … F⎻ G⎻) (*CSC: was (F⎻ ∘ G⎻);*) + | #p; #q; nnormalize; + napply (.= (or_prop1 … G …)); (*CSC: it used to understand without G *) + napply (or_prop1 …) + | #p; #q; nnormalize; + napply (.= (or_prop2 … F …)); + napply or_prop2 + | #p; #q; nnormalize; + napply (.= (or_prop3 … G …)); + napply or_prop3 ] -| intros; split; simplify; - [3: unfold arrows1_of_ORelation_setoid; apply ((†e)‡(†e1)); - |1: apply ((†e)‡(†e1)); - |2,4: apply ((†e1)‡(†e));]] -qed. +##| #a;#a';#b;#b';#e;#e1;#x;nnormalize;napply (.= †(e x));napply e1] +nqed. -definition OA : category2. +(* +ndefinition OA : category2. split; [ apply (OAlgebra); | intros; apply (ORelation_setoid o o1); @@ -430,60 +489,60 @@ nlemma lemma_10_2_a: ∀S,T.∀R:ORelation S T.∀p. p ≤ R⎻* (R⎻ p). napply oa_leq_refl. nqed. -lemma lemma_10_2_b: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* p) ≤ p. - intros; - apply (. (or_prop2 : ?)); - apply oa_leq_refl. -qed. +nlemma lemma_10_2_b: ∀S,T.∀R:ORelation S T.∀p. R⎻ (R⎻* p) ≤ p. + #S; #T; #R; #p; + napply (. (or_prop2 …)); + napply oa_leq_refl. +nqed. -lemma lemma_10_2_c: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R* (R p). - intros; - apply (. (or_prop1 : ?)^-1); - apply oa_leq_refl. -qed. +nlemma lemma_10_2_c: ∀S,T.∀R:ORelation S T.∀p. p ≤ R* (R p). + #S; #T; #R; #p; + napply (. (or_prop1 … p …)^-1); + napply oa_leq_refl. +nqed. -lemma lemma_10_2_d: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* p) ≤ p. - intros; - apply (. (or_prop1 : ?)); - apply oa_leq_refl. -qed. +nlemma lemma_10_2_d: ∀S,T.∀R:ORelation S T.∀p. R (R* p) ≤ p. + #S; #T; #R; #p; + napply (. (or_prop1 …)); + napply oa_leq_refl. +nqed. -lemma lemma_10_3_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p. - intros; apply oa_leq_antisym; - [ apply lemma_10_2_b; - | apply f_minus_image_monotone; - apply lemma_10_2_a; ] -qed. +nlemma lemma_10_3_a: ∀S,T.∀R:ORelation S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p. + #S; #T; #R; #p; napply oa_leq_antisym + [ napply lemma_10_2_b + | napply f_minus_image_monotone; + napply lemma_10_2_a ] +nqed. -lemma lemma_10_3_b: ∀S,T.∀R:arrows2 OA S T.∀p. R* (R (R* p)) = R* p. - intros; apply oa_leq_antisym; - [ apply f_star_image_monotone; - apply (lemma_10_2_d ?? R p); - | apply lemma_10_2_c; ] -qed. +nlemma lemma_10_3_b: ∀S,T.∀R:ORelation S T.∀p. R* (R (R* p)) = R* p. + #S; #T; #R; #p; napply oa_leq_antisym + [ napply f_star_image_monotone; + napply (lemma_10_2_d ?? R p) + | napply lemma_10_2_c ] +nqed. -lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p. - intros; apply oa_leq_antisym; - [ apply lemma_10_2_d; - | apply f_image_monotone; - apply (lemma_10_2_c ?? R p); ] -qed. +nlemma lemma_10_3_c: ∀S,T.∀R:ORelation S T.∀p. R (R* (R p)) = R p. + #S; #T; #R; #p; napply oa_leq_antisym + [ napply lemma_10_2_d + | napply f_image_monotone; + napply (lemma_10_2_c ?? R p) ] +nqed. -lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p. - intros; apply oa_leq_antisym; - [ apply f_minus_star_image_monotone; - apply (lemma_10_2_b ?? R p); - | apply lemma_10_2_a; ] -qed. +nlemma lemma_10_3_d: ∀S,T.∀R:ORelation S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p. + #S; #T; #R; #p; napply oa_leq_antisym + [ napply f_minus_star_image_monotone; + napply (lemma_10_2_b ?? R p) + | napply lemma_10_2_a ] +nqed. -lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p). - intros; apply (†(lemma_10_3_a ?? R p)); -qed. +nlemma lemma_10_4_a: ∀S,T.∀R:ORelation S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p). + #S; #T; #R; #p; napply (†(lemma_10_3_a …)). +nqed. -lemma lemma_10_4_b: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R (R* p))) = R (R* p). -intros; unfold in ⊢ (? ? ? % %); apply (†(lemma_10_3_b ?? R p)); -qed. +nlemma lemma_10_4_b: ∀S,T.∀R:ORelation S T.∀p. R (R* (R (R* p))) = R (R* p). + #S; #T; #R; #p; napply (†(lemma_10_3_b …)); +nqed. -lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U). - intros; split; intro; apply oa_overlap_sym; assumption. -qed. \ No newline at end of file +nlemma oa_overlap_sym': ∀o:OAlgebra.∀U,V:o. (U >< V) = (V >< U). + #o; #U; #V; @; #H; napply oa_overlap_sym; nassumption. +nqed. \ No newline at end of file