X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Foverlap%2Fo-algebra.ma;h=c55131315b21261d7fb493f1af47342a224f2a61;hb=9eca05b38858f9d5b36b9a102c6c8c01632b5057;hp=ce922a38aa05c8dd272655d9663b8bf137fc143b;hpb=924e808f1bc958a2d3c8ac05c96aeb8bc1f6d791;p=helm.git diff --git a/helm/software/matita/nlibrary/overlap/o-algebra.ma b/helm/software/matita/nlibrary/overlap/o-algebra.ma index ce922a38a..c55131315 100644 --- a/helm/software/matita/nlibrary/overlap/o-algebra.ma +++ b/helm/software/matita/nlibrary/overlap/o-algebra.ma @@ -237,11 +237,15 @@ unification hint 0 ≔ P, Q, r; R ≟ (mk_unary_morphism1 … (or_f_minus …) (prop11 … (or_f_minus_morphism1 …))) (* ------------------------ *) ⊢ fun11 … R r ≡ or_f_minus P Q r. + +naxiom daemon : False. nlemma ORelation_eq_respects_leq_or_f_star_: ∀P,Q:OAlgebra.∀r,r':ORelation P Q. r=r' → ∀x. r* x ≤ r'* x. #P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *) + ncases daemon. + (* ngeneralize in match (. (or_prop1 P Q a' (a* x) x)^-1) in ⊢ %; #H; napply H; nchange with (or_f P Q a' (a* x) ≤ x); napply (. ?‡#) @@ -250,7 +254,7 @@ nlemma ORelation_eq_respects_leq_or_f_star_: nchange with (or_f P Q a' = or_f P Q a); napply (.= †e^-1); napply #] napply (. (or_prop1 …)); - napply oa_leq_refl. + napply oa_leq_refl.*) nqed. nlemma ORelation_eq3: @@ -277,6 +281,7 @@ nlemma ORelation_eq_respects_leq_or_f_minus_star_: ∀P,Q:OAlgebra.∀r,r':ORelation P Q. r=r' → ∀x. r⎻* x ≤ r'⎻* x. #P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *) + ncases daemon. (* ngeneralize in match (. (or_prop2 P Q a' (a⎻* x) x)^-1) in ⊢ %; #H; napply H; nchange with (or_f_minus P Q a' (a⎻* x) ≤ x); napply (. ?‡#) @@ -285,7 +290,7 @@ nlemma ORelation_eq_respects_leq_or_f_minus_star_: nchange with (a'⎻ = a⎻); napply (.= †e^-1); napply #] napply (. (or_prop2 …)); - napply oa_leq_refl. + napply oa_leq_refl.*) nqed. nlemma ORelation_eq4: @@ -303,67 +308,12 @@ ndefinition or_f_minus_star_morphism1: | napply ORelation_eq4] nqed. + unification hint 0 ≔ P, Q, r; R ≟ (mk_unary_morphism1 … (or_f_minus_star …) (prop11 … (or_f_minus_star_morphism1 …))) (* ------------------------ *) ⊢ fun11 … R r ≡ or_f_minus_star P Q r. - -(*CSC: -ndefinition ORelation_composition : ∀P,Q,R. - binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). -#P; #Q; #R; @ -[ #F; #G; @ - [ napply (G ∘ F); - | apply rule (G⎻* ∘ F⎻* ); - | apply (F* ∘ G* ); - | apply (F⎻ ∘ G⎻); - | intros; - change with ((G (F p) ≤ q) = (p ≤ (F* (G* q)))); - apply (.= (or_prop1 :?)); - apply (or_prop1 :?); - | intros; - change with ((F⎻ (G⎻ p) ≤ q) = (p ≤ (G⎻* (F⎻* q)))); - apply (.= (or_prop2 :?)); - apply or_prop2 ; - | intros; change with ((G (F (p)) >< q) = (p >< (F⎻ (G⎻ q)))); - apply (.= (or_prop3 :?)); - apply or_prop3; - ] -| intros; split; simplify; - [3: unfold arrows1_of_ORelation_setoid; apply ((†e)‡(†e1)); - |1: apply ((†e)‡(†e1)); - |2,4: apply ((†e1)‡(†e));]] -qed. - -definition OA : category2. -split; -[ apply (OAlgebra); -| intros; apply (ORelation_setoid o o1); -| intro O; split; - [1,2,3,4: apply id2; - |5,6,7:intros; apply refl1;] -| apply ORelation_composition; -| intros (P Q R S F G H); split; - [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); - apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); - | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); - | apply ((comp_assoc2 ????? F G H)^-1); - | apply ((comp_assoc2 ????? H* G* F* ));] -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; -| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] -qed. - -definition OAlgebra_of_objs2_OA: objs2 OA → OAlgebra ≝ λx.x. -coercion OAlgebra_of_objs2_OA. - -definition ORelation_setoid_of_arrows2_OA: - ∀P,Q. arrows2 OA P Q → ORelation_setoid P Q ≝ λP,Q,c.c. -coercion ORelation_setoid_of_arrows2_OA. - -prefer coercion Type_OF_objs2. -*) -(* alias symbol "eq" = "setoid1 eq". *) - + (* qui la notazione non va *) (*CSC nlemma leq_to_eq_join: ∀S:OAlgebra.∀p,q:S. p ≤ q → q = (binary_join ? p q). @@ -486,4 +436,115 @@ nqed. nlemma oa_overlap_sym': ∀o:OAlgebra.∀U,V:o. (U >< V) = (V >< U). #o; #U; #V; @; #H; napply oa_overlap_sym; nassumption. -nqed. \ No newline at end of file +nqed. + +(******************* CATEGORIES **********************) + +ninductive one : Type[0] ≝ unit : one. + +ndefinition force : ∀S:Type[2]. S → ∀T:Type[2]. T → one → Type[2] ≝ + λS,s,T,t,lock. match lock with [ unit => S ]. + +ndefinition enrich_as : + ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one.force S s T t lock ≝ + λS,s,T,t,lock. match lock return λlock.match lock with [ unit ⇒ S ] + with [ unit ⇒ s ]. + +ncoercion enrich_as : ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one. force S s T t lock + ≝ enrich_as on t: ? to force ? ? ? ? ?. + +(* does not work here +nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. +#A; #B; #C; #f; #g; napply(f \circ g). +nqed.*) + +(* This precise hint does not leave spurious metavariables *) +unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B; + lock ≟ unit +(* --------------------------------------------------------------- *) ⊢ + (unary_morphism1 A C) + ≡ + (force (unary_morphism1 A C) (comp1_unary_morphisms A B C f g) + (carr1 A → carr1 C) (composition1 A B C f g) lock) + . + +(* This uniform hint opens spurious metavariables +unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B, X; + lock ≟ unit +(* --------------------------------------------------------------- *) ⊢ + (unary_morphism1 A C) + ≡ + (force (unary_morphism1 A C) X (carr1 A → carr1 C) (fun11 … X) lock) + . +*) + +nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. +#A; #B; #C; #f; #g; napply(f ∘ g). +nqed. + +(* + +ndefinition uffa: ∀A,B. ∀U: unary_morphism1 A B. (A → B) → CProp[0]. + #A;#B;#_;#_; napply True. +nqed. +ndefinition mk_uffa: ∀A,B.∀U: unary_morphism1 A B. ∀f: (A → B). uffa A B U f. + #A; #B; #U; #f; napply I. +nqed. + +ndefinition coerc_to_unary_morphism1: + ∀A,B. ∀U: unary_morphism1 A B. uffa A B U (fun11 … U) → unary_morphism1 A B. + #A; #B; #U; #_; nassumption. +nqed. + +ncheck (λA,B,C,f,g.coerc_to_unary_morphism1 ??? (mk_uffa ??? (composition1 A B C f g))). +*) +ndefinition ORelation_composition : ∀P,Q,R. + binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). +#P; #Q; #R; @ +[ #F; #G; @ + [ napply (G ∘ F) (* napply (comp1_unary_morphisms … G F) (*CSC: was (G ∘ F);*) *) + | napply (G⎻* ∘ F⎻* ) (* napply (comp1_unary_morphisms … G⎻* F⎻* ) (*CSC: was (G⎻* ∘ F⎻* );*)*) + | napply (comp1_unary_morphisms … F* G* ) (*CSC: was (F* ∘ G* );*) + | napply (comp1_unary_morphisms … F⎻ G⎻) (*CSC: was (F⎻ ∘ G⎻);*) + | #p; #q; nnormalize; + napply (.= (or_prop1 … G …)); (*CSC: it used to understand without G *) + napply (or_prop1 …) + | #p; #q; nnormalize; + napply (.= (or_prop2 … F …)); + napply or_prop2 + | #p; #q; nnormalize; + napply (.= (or_prop3 … G …)); + napply or_prop3 + ] +##| #a;#a';#b;#b';#e;#e1;#x;nnormalize;napply (.= †(e x));napply e1] +nqed. + +(* +ndefinition OA : category2. +split; +[ apply (OAlgebra); +| intros; apply (ORelation_setoid o o1); +| intro O; split; + [1,2,3,4: apply id2; + |5,6,7:intros; apply refl1;] +| apply ORelation_composition; +| intros (P Q R S F G H); split; + [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* )); + apply (comp_assoc2 ????? (F⎻* ) (G⎻* ) (H⎻* )); + | apply ((comp_assoc2 ????? (H⎻) (G⎻) (F⎻))^-1); + | apply ((comp_assoc2 ????? F G H)^-1); + | apply ((comp_assoc2 ????? H* G* F* ));] +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left2; +| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right2;] +qed. + +definition OAlgebra_of_objs2_OA: objs2 OA → OAlgebra ≝ λx.x. +coercion OAlgebra_of_objs2_OA. + +definition ORelation_setoid_of_arrows2_OA: + ∀P,Q. arrows2 OA P Q → ORelation_setoid P Q ≝ λP,Q,c.c. +coercion ORelation_setoid_of_arrows2_OA. + +prefer coercion Type_OF_objs2. +*) +(* alias symbol "eq" = "setoid1 eq". *)