X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fre%2Fre-setoids.ma;h=dcf1d85fe99fa8488b3e566c0b16d0dad7ed9e05;hb=4b940bfbeab1181dd18c56e46761f5e6690d9f9d;hp=29e7c5ed21e69a1c958a0b1d359fd6b93f503b13;hpb=90ff94e74ceed0954b8599bff55d5c84f15c1b9f;p=helm.git diff --git a/helm/software/matita/nlibrary/re/re-setoids.ma b/helm/software/matita/nlibrary/re/re-setoids.ma index 29e7c5ed2..dcf1d85fe 100644 --- a/helm/software/matita/nlibrary/re/re-setoids.ma +++ b/helm/software/matita/nlibrary/re/re-setoids.ma @@ -12,8 +12,9 @@ (* *) (**************************************************************************) -include "datatypes/pairs.ma". -include "datatypes/bool.ma". +include "datatypes/pairs-setoids.ma". +include "datatypes/bool-setoids.ma". +include "datatypes/list-setoids.ma". include "sets/sets.ma". (* @@ -21,82 +22,13 @@ ninductive Admit : CProp[0] ≝ . naxiom admit : Admit. *) -(* single = is for the abstract equality of setoids, == is for concrete - equalities (that may be lifted to the setoid level when needed *) -notation < "hvbox(a break mpadded width -50% (=)= b)" non associative with precedence 45 for @{ 'eq_low $a $b }. -notation > "a == b" non associative with precedence 45 for @{ 'eq_low $a $b }. - - -(* XXX move to lists.ma *) -ninductive list (A:Type[0]) : Type[0] ≝ - | nil: list A - | cons: A -> list A -> list A. - -nlet rec eq_list (A : setoid) (l1, l2 : list A) on l1 : CProp[0] ≝ -match l1 with -[ nil ⇒ match l2 return λ_.CProp[0] with [ nil ⇒ True | _ ⇒ False ] -| cons x xs ⇒ match l2 with [ nil ⇒ False | cons y ys ⇒ x = y ∧ eq_list ? xs ys]]. - -interpretation "eq_list" 'eq_low a b = (eq_list ? a b). - -ndefinition LIST : setoid → setoid. -#S; @(list S); @(eq_list S); -##[ #l; nelim l; //; #; @; //; -##| #l1; nelim l1; ##[ #y; ncases y; //] #x xs H y; ncases y; ##[*] #y ys; *; #; @; /2/; -##| #l1; nelim l1; ##[ #l2 l3; ncases l2; ncases l3; /3/; #z zs y ys; *] - #x xs H l2 l3; ncases l2; ncases l3; /2/; #z zs y yz; *; #H1 H2; *; #H3 H4; @; /3/;##] -nqed. - -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -unification hint 0 ≔ S : setoid; - T ≟ carr S, - P1 ≟ refl ? (eq0 (LIST S)), - P2 ≟ sym ? (eq0 (LIST S)), - P3 ≟ trans ? (eq0 (LIST S)), - X ≟ mk_setoid (list S) (mk_equivalence_relation ? (eq_list T) P1 P2 P3) -(*-----------------------------------------------------------------------*) ⊢ - carr X ≡ list T. - -unification hint 0 ≔ SS : setoid; - S ≟ carr SS, - TT ≟ setoid1_of_setoid (LIST SS) -(*-----------------------------------------------------------------*) ⊢ - list S ≡ carr1 TT. - -unification hint 0 ≔ S:setoid,a,b:list S; - R ≟ eq0 (LIST S), - L ≟ (list S) -(* -------------------------------------------- *) ⊢ - eq_list S a b ≡ eq_rel L R a b. - -alias symbol "hint_decl" (instance 1) = "hint_decl_CProp2". -unification hint 0 ≔ S : setoid, x,y; - SS ≟ LIST S, - TT ≟ setoid1_of_setoid SS -(*-----------------------------------------*) ⊢ - eq_list S x y ≡ eq_rel1 ? (eq1 TT) x y. - -notation "hvbox(hd break :: tl)" - right associative with precedence 47 - for @{'cons $hd $tl}. - -notation "[ list0 x sep ; ]" - non associative with precedence 90 - for ${fold right @'nil rec acc @{'cons $x $acc}}. - -notation "hvbox(l1 break @ l2)" - right associative with precedence 47 - for @{'append $l1 $l2 }. - -interpretation "nil" 'nil = (nil ?). -interpretation "cons" 'cons hd tl = (cons ? hd tl). +(* XXX move somewere else *) +ndefinition if': ∀A,B:CPROP. A = B → A → B. +#A B; *; /2/. nqed. -nlet rec append A (l1: list A) l2 on l1 ≝ - match l1 with - [ nil ⇒ l2 - | cons hd tl ⇒ hd :: append A tl l2 ]. +ncoercion if : ∀A,B:CPROP. ∀p:A = B. A → B ≝ if' on _p : eq_rel1 ???? to ∀_:?.?. -interpretation "append" 'append l1 l2 = (append ? l1 l2). +(* XXX move to list-setoids-theory.ma *) ntheorem append_nil: ∀A:setoid.∀l:list A.l @ [] = l. #A;#l;nelim l;//; #a;#l1;#IH;nnormalize;/2/;nqed. @@ -106,57 +38,37 @@ ndefinition associative ≝ λA:setoid.λf:A → A → A.∀x,y,z.f x (f y z) = ntheorem associative_append: ∀A:setoid.associative (list A) (append A). #A;#x;#y;#z;nelim x[ napply (refl ???) |#a;#x1;#H;nnormalize;/2/]nqed. -nlet rec flatten S (l : list (list S)) on l : list S ≝ -match l with [ nil ⇒ [ ] | cons w tl ⇒ w @ flatten ? tl ]. - (* end move to list *) + +(* XXX to undestand what I want inside Alpha + the eqb part should be split away, but when available it should be + possible to obtain a leibnitz equality on lemmas proved on setoids +*) interpretation "iff" 'iff a b = (iff a b). -ninductive eq (A:Type[0]) (x:A) : A → CProp[0] ≝ refl: eq A x x. +ninductive eq (A:Type[0]) (x:A) : A → CProp[0] ≝ erefl: eq A x x. nlemma eq_rect_Type0_r': - ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type[0]. P a (refl A a) → P x p. + ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type[0]. P a (erefl A a) → P x p. #A; #a; #x; #p; ncases p; #P; #H; nassumption. nqed. nlemma eq_rect_Type0_r: - ∀A.∀a.∀P: ∀x:A. eq ? x a → Type[0]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. + ∀A.∀a.∀P: ∀x:A. eq ? x a → Type[0]. P a (erefl A a) → ∀x.∀p:eq ? x a.P x p. #A; #a; #P; #p; #x0; #p0; napply (eq_rect_Type0_r' ??? p0); nassumption. nqed. nlemma eq_rect_CProp0_r': - ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (refl A a) → P x p. + ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (erefl A a) → P x p. #A; #a; #x; #p; ncases p; #P; #H; nassumption. nqed. nlemma eq_rect_CProp0_r: - ∀A.∀a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. + ∀A.∀a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (erefl A a) → ∀x.∀p:eq ? x a.P x p. #A; #a; #P; #p; #x0; #p0; napply (eq_rect_CProp0_r' ??? p0); nassumption. nqed. -(* XXX move to bool *) -interpretation "bool eq" 'eq_low a b = (eq bool a b). - -ndefinition BOOL : setoid. -@bool; @(eq bool); nnormalize; //; #x y; ##[ #E; ncases E; ##| #y H; ncases H; ##] //; nqed. - -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -alias id "refl" = "cic:/matita/ng/properties/relations/refl.fix(0,1,3)". -unification hint 0 ≔ ; - P1 ≟ refl ? (eq0 BOOL), - P2 ≟ sym ? (eq0 BOOL), - P3 ≟ trans ? (eq0 BOOL), - X ≟ mk_setoid bool (mk_equivalence_relation ? (eq bool) P1 P2 P3) -(*-----------------------------------------------------------------------*) ⊢ - carr X ≡ bool. - -unification hint 0 ≔ a,b; - R ≟ eq0 BOOL, - L ≟ bool -(* -------------------------------------------- *) ⊢ - eq bool a b ≡ eq_rel L R a b. - nrecord Alpha : Type[1] ≝ { acarr :> setoid; eqb: acarr → acarr → bool; @@ -164,7 +76,9 @@ nrecord Alpha : Type[1] ≝ { }. interpretation "eqb" 'eq_low a b = (eqb ? a b). +(* end alpha *) +(* re *) ninductive re (S: Type[0]) : Type[0] ≝ z: re S | e: re S @@ -173,6 +87,30 @@ ninductive re (S: Type[0]) : Type[0] ≝ | o: re S → re S → re S | k: re S → re S. +notation < "a \sup ⋇" non associative with precedence 90 for @{ 'pk $a}. +notation > "a ^ *" non associative with precedence 75 for @{ 'pk $a}. +interpretation "star" 'pk a = (k ? a). +interpretation "or" 'plus a b = (o ? a b). + +notation "a · b" non associative with precedence 60 for @{ 'pc $a $b}. +interpretation "cat" 'pc a b = (c ? a b). + +(* to get rid of \middot *) +ncoercion c : ∀S.∀p:re S. re S → re S ≝ c on _p : re ? to ∀_:?.?. + +notation < "a" non associative with precedence 90 for @{ 'ps $a}. +notation > "` term 90 a" non associative with precedence 90 for @{ 'ps $a}. +interpretation "atom" 'ps a = (s ? a). + +notation "ϵ" non associative with precedence 90 for @{ 'epsilon }. +interpretation "epsilon" 'epsilon = (e ?). + +notation "0" non associative with precedence 90 for @{ 'empty_r }. +interpretation "empty" 'empty_r = (z ?). + +notation > "'lang' S" non associative with precedence 90 for @{ Ω^(list $S) }. +notation > "'Elang' S" non associative with precedence 90 for @{ 𝛀^(list $S) }. + (* setoid support for re *) nlet rec eq_re (S:Alpha) (a,b : re S) on a : CProp[0] ≝ @@ -203,8 +141,6 @@ ndefinition RE : Alpha → setoid. #r2 r3; /3/; ##]##] nqed. -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -alias id "carr" = "cic:/matita/ng/sets/setoids/carr.fix(0,0,1)". unification hint 0 ≔ A : Alpha; S ≟ acarr A, T ≟ carr S, @@ -222,7 +158,7 @@ unification hint 0 ≔ A:Alpha,a,b:re A; eq_re A a b ≡ eq_rel L R a b. nlemma c_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A). -#A; napply (mk_binary_morphism … (λs1,s2:re A. c A s1 s2)); +#A; napply (mk_binary_morphism … (λs1,s2:re A. s1 · s2)); #a; nelim a; ##[##1,2: #a' b b'; ncases a'; nnormalize; /2/ by conj; ##|#x a' b b'; ncases a'; /2/ by conj; @@ -231,16 +167,17 @@ nlemma c_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A). nqed. (* XXX This is the good format for hints about morphisms, fix the others *) +alias symbol "hint_decl" (instance 1) = "hint_decl_Type0". unification hint 0 ≔ S:Alpha, A,B:re S; MM ≟ mk_unary_morphism ?? - (λA:re S.mk_unary_morphism ?? (λB.c ? A B) (prop1 ?? (c_is_morph S A))) + (λA:re S.mk_unary_morphism ?? (λB.A · B) (prop1 ?? (c_is_morph S A))) (prop1 ?? (c_is_morph S)), T ≟ RE S (*--------------------------------------------------------------------------*) ⊢ - fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ c S A B. + fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ A · B. nlemma o_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A). -#A; napply (mk_binary_morphism … (λs1,s2:re A. o A s1 s2)); +#A; napply (mk_binary_morphism … (λs1,s2:re A. s1 + s2)); #a; nelim a; ##[##1,2: #a' b b'; ncases a'; nnormalize; /2/ by conj; ##|#x a' b b'; ncases a'; /2/ by conj; @@ -250,47 +187,17 @@ nqed. unification hint 0 ≔ S:Alpha, A,B:re S; MM ≟ mk_unary_morphism ?? - (λA:re S.mk_unary_morphism ?? (λB.o ? A B) (prop1 ?? (o_is_morph S A))) + (λA:re S.mk_unary_morphism ?? (λB.A + B) (prop1 ?? (o_is_morph S A))) (prop1 ?? (o_is_morph S)), T ≟ RE S (*--------------------------------------------------------------------------*) ⊢ - fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ o S A B. - + fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ A + B. (* end setoids support for re *) -notation < "a \sup ⋇" non associative with precedence 90 for @{ 'pk $a}. -notation > "a ^ *" non associative with precedence 75 for @{ 'pk $a}. -interpretation "star" 'pk a = (k ? a). -interpretation "or" 'plus a b = (o ? a b). - -notation "a · b" non associative with precedence 60 for @{ 'pc $a $b}. -interpretation "cat" 'pc a b = (c ? a b). - -(* to get rid of \middot *) -ncoercion c : ∀S.∀p:re S. re S → re S ≝ c on _p : re ? to ∀_:?.?. - -notation < "a" non associative with precedence 90 for @{ 'ps $a}. -notation > "` term 90 a" non associative with precedence 90 for @{ 'ps $a}. -interpretation "atom" 'ps a = (s ? a). - -notation "ϵ" non associative with precedence 90 for @{ 'epsilon }. -interpretation "epsilon" 'epsilon = (e ?). - -notation "0" non associative with precedence 90 for @{ 'empty_r }. -interpretation "empty" 'empty_r = (z ?). - -notation > "'lang' S" non associative with precedence 90 for @{ Ω^(list $S) }. -notation > "'Elang' S" non associative with precedence 90 for @{ 𝛀^(list $S) }. - nlet rec conjunct S (l : list (list S)) (L : lang S) on l: CProp[0] ≝ match l with [ nil ⇒ True | cons w tl ⇒ w ∈ L ∧ conjunct ? tl L ]. -(* -ndefinition sing_lang : ∀A:setoid.∀x:A.Ω^A ≝ λS.λx.{ w | x = w }. -interpretation "sing lang" 'singl x = (sing_lang ? x). -*) - interpretation "subset construction with type" 'comprehension t \eta.x = (mk_powerclass t x). @@ -314,10 +221,6 @@ match r with notation "𝐋 term 70 E" non associative with precedence 75 for @{'L_re $E}. interpretation "in_l" 'L_re E = (L_re ? E). -notation "a || b" left associative with precedence 30 for @{'orb $a $b}. -ndefinition orb ≝ λa,b:bool. match a with [ true ⇒ true | _ ⇒ b ]. -interpretation "orb" 'orb a b = (orb a b). - ninductive pitem (S: Type[0]) : Type[0] ≝ pz: pitem S | pe: pitem S @@ -327,6 +230,19 @@ ninductive pitem (S: Type[0]) : Type[0] ≝ | po: pitem S → pitem S → pitem S | pk: pitem S → pitem S. +interpretation "pstar" 'pk a = (pk ? a). +interpretation "por" 'plus a b = (po ? a b). +interpretation "pcat" 'pc a b = (pc ? a b). +notation < ".a" non associative with precedence 90 for @{ 'pp $a}. +notation > "`. term 90 a" non associative with precedence 90 for @{ 'pp $a}. +interpretation "ppatom" 'pp a = (pp ? a). +(* to get rid of \middot *) +ncoercion pc : ∀S.∀p:pitem S. pitem S → pitem S ≝ pc on _p : pitem ? to ∀_:?.?. +interpretation "patom" 'ps a = (ps ? a). +interpretation "pepsilon" 'epsilon = (pe ?). +interpretation "pempty" 'empty_r = (pz ?). + +(* setoids for pitem *) nlet rec eq_pitem (S : Alpha) (p1, p2 : pitem S) on p1 : CProp[0] ≝ match p1 with [ pz ⇒ match p2 with [ pz ⇒ True | _ ⇒ False] @@ -372,40 +288,8 @@ unification hint 0 ≔ S:Alpha,a,b:pitem S; (* -------------------------------------------- *) ⊢ eq_pitem S a b ≡ eq_rel L (eq0 R) a b. -(* XXX move to pair.ma *) -nlet rec eq_pair (A, B : setoid) (a : A × B) (b : A × B) on a : CProp[0] ≝ - match a with [ mk_pair a1 a2 ⇒ - match b with [ mk_pair b1 b2 ⇒ a1 = b1 ∧ a2 = b2 ]]. - -interpretation "eq_pair" 'eq_low a b = (eq_pair ?? a b). - -nlemma PAIR : ∀A,B:setoid. setoid. -#A B; @(A × B); @(eq_pair …); -##[ #ab; ncases ab; #a b; @; napply #; -##| #ab cd; ncases ab; ncases cd; #a1 a2 b1 b2; *; #E1 E2; - @; napply (?^-1); //; -##| #a b c; ncases a; ncases b; ncases c; #c1 c2 b1 b2 a1 a2; - *; #E1 E2; *; #E3 E4; @; ##[ napply (.= E1); //] napply (.= E2); //.##] -nqed. +(* end setoids for pitem *) -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -unification hint 0 ≔ AA, BB; - A ≟ carr AA, B ≟ carr BB, - P1 ≟ refl ? (eq0 (PAIR AA BB)), - P2 ≟ sym ? (eq0 (PAIR AA BB)), - P3 ≟ trans ? (eq0 (PAIR AA BB)), - R ≟ mk_setoid (A × B) (mk_equivalence_relation ? (eq_pair …) P1 P2 P3) -(*---------------------------------------------------------------------------*)⊢ - carr R ≡ A × B. - -unification hint 0 ≔ S1,S2,a,b; - R ≟ PAIR S1 S2, - L ≟ (pair S1 S2) -(* -------------------------------------------- *) ⊢ - eq_pair S1 S2 a b ≡ eq_rel L (eq0 R) a b. - -(* end move to pair *) - ndefinition pre ≝ λS.pitem S × bool. notation "\fst term 90 x" non associative with precedence 90 for @{'fst $x}. @@ -413,18 +297,6 @@ interpretation "fst" 'fst x = (fst ? ? x). notation > "\snd term 90 x" non associative with precedence 90 for @{'snd $x}. interpretation "snd" 'snd x = (snd ? ? x). -interpretation "pstar" 'pk a = (pk ? a). -interpretation "por" 'plus a b = (po ? a b). -interpretation "pcat" 'pc a b = (pc ? a b). -notation < ".a" non associative with precedence 90 for @{ 'pp $a}. -notation > "`. term 90 a" non associative with precedence 90 for @{ 'pp $a}. -interpretation "ppatom" 'pp a = (pp ? a). -(* to get rid of \middot *) -ncoercion pc : ∀S.∀p:pitem S. pitem S → pitem S ≝ pc on _p : pitem ? to ∀_:?.?. -interpretation "patom" 'ps a = (ps ? a). -interpretation "pepsilon" 'epsilon = (pe ?). -interpretation "pempty" 'empty_r = (pz ?). - notation > "|term 19 e|" non associative with precedence 70 for @{forget ? $e}. nlet rec forget (S: Alpha) (l : pitem S) on l: re S ≝ match l with @@ -435,6 +307,7 @@ nlet rec forget (S: Alpha) (l : pitem S) on l: re S ≝ | pc E1 E2 ⇒ (|E1| · |E2|) | po E1 E2 ⇒ (|E1| + |E2|) | pk E ⇒ |E|^* ]. + notation < "|term 19 e|" non associative with precedence 70 for @{'forget $e}. interpretation "forget" 'forget a = (forget ? a). @@ -452,6 +325,7 @@ notation > "𝐋\p term 70 E" non associative with precedence 75 for @{'L_pi $E} notation "𝐋\sub(\p) term 70 E" non associative with precedence 75 for @{'L_pi $E}. interpretation "in_pl" 'L_pi E = (L_pi ? E). +(* set support for 𝐋\p *) ndefinition L_pi_ext : ∀S:Alpha.∀r:pitem S.Elang S. #S r; @(𝐋\p r); #w1 w2 E; nelim r; ##[ ##1,2: /2/; @@ -479,6 +353,8 @@ unification hint 0 ≔ S : Alpha,e : pitem S; X ≟ (mk_ext_powerclass SS (𝐋\p e) (ext_prop SS (L_pi_ext S e))) (*-----------------------------------------------------------------*)⊢ ext_carr SS X ≡ 𝐋\p e. + +(* end set support for 𝐋\p *) ndefinition epsilon ≝ λS:Alpha.λb.match b return λ_.lang S with [ true ⇒ { [ ] } | _ ⇒ ∅ ]. @@ -494,10 +370,10 @@ interpretation "L_pr" 'L_pi E = (L_pr ? E). nlemma append_eq_nil : ∀S:setoid.∀w1,w2:list S. [ ] = w1 @ w2 → w1 = [ ]. #S w1; ncases w1; //. nqed. -(* lemma 12 *) +(* lemma 12 *) (* XXX: a case where Leibnitz equality could be exploited for H *) nlemma epsilon_in_true : ∀S:Alpha.∀e:pre S. [ ] ∈ 𝐋\p e = (\snd e = true). -#S r; ncases r; #e b; @; ##[##2: #H; nrewrite > H; @2; /2/; ##] ncases b;//; -*; ##[##2:*] nelim e; +#S r; ncases r; #e b; @; ##[##2: #H; ncases b in H; ##[##2:*] #; @2; /2/; ##] +ncases b; //; *; ##[##2:*] nelim e; ##[ ##1,2: *; ##| #c; *; ##| #c; *| ##7: #p H; ##| #r1 r2 H G; *; ##[##2: nassumption; ##] ##| #r1 r2 H1 H2; *; /2/ by {}] @@ -576,12 +452,6 @@ nchange in match (ϵ false) with ∅; ##| napply (.= (cup0 ? {[]})^-1); napply cupC; ##] nqed. -(* XXX move somewere else *) -ndefinition if': ∀A,B:CPROP. A = B → A → B. -#A B; *; /2/. nqed. - -ncoercion if : ∀A,B:CPROP. ∀p:A = B. A → B ≝ if' on _p : eq_rel1 ???? to ∀_:?.?. - (* theorem 16: 2 *) nlemma oplus_cup : ∀S:Alpha.∀e1,e2:pre S.𝐋\p (e1 ⊕ e2) = 𝐋\p e1 ∪ 𝐋\p e2. #S r1; ncases r1; #e1 b1 r2; ncases r2; #e2 b2; (* oh my! @@ -601,10 +471,12 @@ nqed. (* XXX problem: auto does not find # (refl) when it has a concrete == *) nlemma odotEt : ∀S:Alpha.∀e1,e2:pitem S.∀b2:bool. 〈e1,true〉 ⊙ 〈e2,b2〉 = 〈e1 · \fst (•e2),b2 || \snd (•e2)〉. -#S e1 e2 b2; ncases b2; nnormalize; @; //; @; napply refl; nqed. +#S e1 e2 b2; ncases b2; @; /3/ by refl, conj, I; nqed. +(* nlemma LcatE : ∀S:Alpha.∀e1,e2:pitem S. 𝐋\p (e1 · e2) = 𝐋\p e1 · 𝐋 |e2| ∪ 𝐋\p e2. //; nqed. +*) nlemma cup_dotD : ∀S:Alpha.∀p,q,r:lang S.(p ∪ q) · r = (p · r) ∪ (q · r). #S p q r; napply ext_set; #w; nnormalize; @; @@ -655,35 +527,39 @@ nlemma erase_bull : ∀S:Alpha.∀a:pitem S. |\fst (•a)| = |a|. ncases (•e1); ncases (•e2); //] nqed. +(* nlemma eta_lp : ∀S:Alpha.∀p:pre S. 𝐋\p p = 𝐋\p 〈\fst p, \snd p〉. #S p; ncases p; //; nqed. +*) -(* ext_carr non applica *) +(* XXX coercion ext_carr non applica *) nlemma epsilon_dot: ∀S:Alpha.∀p:Elang S. {[]} · (ext_carr ? p) = p. #S e; napply ext_set; #w; @; ##[##2: #Hw; @[]; @w; @; //; @; //; napply #; (* XXX auto *) ##] *; #w1; *; #w2; *; *; #defw defw1 Hw2; -napply (. defw╪_1#); -napply (. (defw1^-1 ╪_0 #)╪_1#); (* manca @ morfismo *) -napply Hw2; nqed. - -STOP +napply (. defw╪_1#); +napply (. ((defw1 : [ ] = ?)^-1 ╪_0 #)╪_1#); +napply Hw2; +nqed. (* theorem 16: 1 → 3 *) -nlemma odot_dot_aux : ∀S.∀e1,e2: pre S. - 𝐋\p (•(\fst e2)) = 𝐋\p (\fst e2) ∪ 𝐋 .|\fst e2| → - 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 .|\fst e2| ∪ 𝐋\p e2. +nlemma odot_dot_aux : ∀S:Alpha.∀e1,e2: pre S. + 𝐋\p (•(\fst e2)) = 𝐋\p (\fst e2) ∪ 𝐋 |\fst e2| → + 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 |\fst e2| ∪ 𝐋\p e2. #S e1 e2 th1; ncases e1; #e1' b1'; ncases b1'; -##[ nwhd in ⊢ (??(??%)?); nletin e2' ≝ (\fst e2); nletin b2' ≝ (\snd e2); +##[ nchange in match (〈?,true〉⊙?) with 〈?,?〉; + nletin e2' ≝ (\fst e2); nletin b2' ≝ (\snd e2); nletin e2'' ≝ (\fst (•(\fst e2))); nletin b2'' ≝ (\snd (•(\fst e2))); - nchange in ⊢ (??%?) with (?∪?); - nchange in ⊢ (??(??%?)?) with (?∪?); - nchange in match (𝐋\p 〈?,?〉) with (?∪?); - nrewrite > (epsilon_or …); nrewrite > (cupC ? (ϵ ?)…); - nrewrite > (cupA …);nrewrite < (cupA ?? (ϵ?)…); - nrewrite > (?: 𝐋\p e2'' ∪ ϵ b2'' = 𝐋\p e2' ∪ 𝐋 .|e2'|); ##[##2: - nchange with (𝐋\p 〈e2'',b2''〉 = 𝐋\p e2' ∪ 𝐋 .|e2'|); - ngeneralize in match th1; - nrewrite > (eta_lp…); #th1; nrewrite > th1; //;##] + napply (.=_1 (# ╪_1 (epsilon_or …))); (* XXX … is too slow if combined with .= *) + nchange in match b2'' with b2''; (* XXX some unfoldings happened *) + nchange in match b2' with b2'; + napply (.=_1 (# ╪_1 (cupC …))); napply (.=_1 (cupA …)); + napply (.=_1 (# ╪_1 (cupA …)^-1)); (* XXX slow, but not because of disamb! *) + ncut (𝐋\p e2'' ∪ ϵ b2'' = 𝐋\p e2' ∪ 𝐋 |e2'|); ##[ + nchange with (𝐋\p 〈e2'',b2''〉 = 𝐋\p e2' ∪ 𝐋 |e2'|); + napply (?^-1); napply (.=_1 th1^-1); //;##] #E; + napply (.=_1 (# ╪_1 (E ╪_1 #))); + STOP + nrewrite > (eta_lp ? e2); nchange in match (𝐋\p 〈\fst e2,?〉) with (𝐋\p e2'∪ ϵ b2'); nrewrite > (cup_dotD …); nrewrite > (epsilon_dot…);