X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fre%2Fre-setoids.ma;h=dcf1d85fe99fa8488b3e566c0b16d0dad7ed9e05;hb=d05dded8c907533b3aba2fcc75c82fa56478af0e;hp=a340fadf7479936938446351098237b2d3388d34;hpb=e8fbe5898b3214a5b0c4d48e8c9d1ee55f3415cc;p=helm.git diff --git a/helm/software/matita/nlibrary/re/re-setoids.ma b/helm/software/matita/nlibrary/re/re-setoids.ma index a340fadf7..dcf1d85fe 100644 --- a/helm/software/matita/nlibrary/re/re-setoids.ma +++ b/helm/software/matita/nlibrary/re/re-setoids.ma @@ -12,127 +12,73 @@ (* *) (**************************************************************************) -include "datatypes/pairs.ma". -include "datatypes/bool.ma". +include "datatypes/pairs-setoids.ma". +include "datatypes/bool-setoids.ma". +include "datatypes/list-setoids.ma". include "sets/sets.ma". +(* ninductive Admit : CProp[0] ≝ . naxiom admit : Admit. +*) -ninductive list (A:Type[0]) : Type[0] ≝ - | nil: list A - | cons: A -> list A -> list A. - -nlet rec eq_list (A : setoid) (l1, l2 : list A) on l1 : CProp[0] ≝ -match l1 with -[ nil ⇒ match l2 return λ_.CProp[0] with [ nil ⇒ True | _ ⇒ False ] -| cons x xs ⇒ match l2 with [ nil ⇒ False | cons y ys ⇒ x = y ∧ eq_list ? xs ys]]. - -ndefinition LIST : setoid → setoid. -#S; @(list S); @(eq_list S); ncases admit; nqed. - -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -unification hint 0 ≔ S : setoid; - P1 ≟ refl ? (eq0 (LIST S)), - P2 ≟ sym ? (eq0 (LIST S)), - P3 ≟ trans ? (eq0 (LIST S)), - X ≟ mk_setoid (list S) (mk_equivalence_relation ? (eq_list S) P1 P2 P3), - T ≟ carr S -(*-----------------------------------------------------------------------*) ⊢ - carr X ≡ list T. - -unification hint 0 ≔ S,a,b; - R ≟ LIST S, - L ≟ (list S) -(* -------------------------------------------- *) ⊢ - eq_list S a b ≡ eq_rel L (eq0 R) a b. - -notation "hvbox(hd break :: tl)" - right associative with precedence 47 - for @{'cons $hd $tl}. - -notation "[ list0 x sep ; ]" - non associative with precedence 90 - for ${fold right @'nil rec acc @{'cons $x $acc}}. - -notation "hvbox(l1 break @ l2)" - right associative with precedence 47 - for @{'append $l1 $l2 }. - -interpretation "nil" 'nil = (nil ?). -interpretation "cons" 'cons hd tl = (cons ? hd tl). +(* XXX move somewere else *) +ndefinition if': ∀A,B:CPROP. A = B → A → B. +#A B; *; /2/. nqed. -nlet rec append A (l1: list A) l2 on l1 ≝ - match l1 with - [ nil ⇒ l2 - | cons hd tl ⇒ hd :: append A tl l2 ]. +ncoercion if : ∀A,B:CPROP. ∀p:A = B. A → B ≝ if' on _p : eq_rel1 ???? to ∀_:?.?. -interpretation "append" 'append l1 l2 = (append ? l1 l2). +(* XXX move to list-setoids-theory.ma *) ntheorem append_nil: ∀A:setoid.∀l:list A.l @ [] = l. #A;#l;nelim l;//; #a;#l1;#IH;nnormalize;/2/;nqed. ndefinition associative ≝ λA:setoid.λf:A → A → A.∀x,y,z.f x (f y z) = f (f x y) z. - ntheorem associative_append: ∀A:setoid.associative (list A) (append A). -#A;#x;#y;#z;nelim x[ napply # |#a;#x1;#H;nnormalize;/2/]nqed. +#A;#x;#y;#z;nelim x[ napply (refl ???) |#a;#x1;#H;nnormalize;/2/]nqed. +(* end move to list *) + + +(* XXX to undestand what I want inside Alpha + the eqb part should be split away, but when available it should be + possible to obtain a leibnitz equality on lemmas proved on setoids +*) interpretation "iff" 'iff a b = (iff a b). -ninductive eq (A:Type[0]) (x:A) : A → CProp[0] ≝ refl: eq A x x. +ninductive eq (A:Type[0]) (x:A) : A → CProp[0] ≝ erefl: eq A x x. nlemma eq_rect_Type0_r': - ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type[0]. P a (refl A a) → P x p. + ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type[0]. P a (erefl A a) → P x p. #A; #a; #x; #p; ncases p; #P; #H; nassumption. nqed. nlemma eq_rect_Type0_r: - ∀A.∀a.∀P: ∀x:A. eq ? x a → Type[0]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. + ∀A.∀a.∀P: ∀x:A. eq ? x a → Type[0]. P a (erefl A a) → ∀x.∀p:eq ? x a.P x p. #A; #a; #P; #p; #x0; #p0; napply (eq_rect_Type0_r' ??? p0); nassumption. nqed. nlemma eq_rect_CProp0_r': - ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (refl A a) → P x p. + ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (erefl A a) → P x p. #A; #a; #x; #p; ncases p; #P; #H; nassumption. nqed. nlemma eq_rect_CProp0_r: - ∀A.∀a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. + ∀A.∀a.∀P: ∀x:A. eq ? x a → CProp[0]. P a (erefl A a) → ∀x.∀p:eq ? x a.P x p. #A; #a; #P; #p; #x0; #p0; napply (eq_rect_CProp0_r' ??? p0); nassumption. nqed. -notation < "a = b" non associative with precedence 45 for @{ 'eqpp $a $b}. -interpretation "bool eq" 'eqpp a b = (eq bool a b). - -ndefinition BOOL : setoid. -@bool; @(eq bool); ncases admit.nqed. - -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -alias id "refl" = "cic:/matita/ng/properties/relations/refl.fix(0,1,3)". -unification hint 0 ≔ ; - P1 ≟ refl ? (eq0 BOOL), - P2 ≟ sym ? (eq0 BOOL), - P3 ≟ trans ? (eq0 BOOL), - X ≟ mk_setoid bool (mk_equivalence_relation ? (eq bool) P1 P2 P3) -(*-----------------------------------------------------------------------*) ⊢ - carr X ≡ bool. - -unification hint 0 ≔ a,b; - R ≟ BOOL, - L ≟ bool -(* -------------------------------------------- *) ⊢ - eq bool a b ≡ eq_rel L (eq0 R) a b. - nrecord Alpha : Type[1] ≝ { acarr :> setoid; eqb: acarr → acarr → bool; eqb_true: ∀x,y. (eqb x y = true) = (x = y) }. -notation "a == b" non associative with precedence 45 for @{ 'eqb $a $b }. -interpretation "eqb" 'eqb a b = (eqb ? a b). +interpretation "eqb" 'eq_low a b = (eqb ? a b). +(* end alpha *) +(* re *) ninductive re (S: Type[0]) : Type[0] ≝ z: re S | e: re S @@ -141,27 +87,6 @@ ninductive re (S: Type[0]) : Type[0] ≝ | o: re S → re S → re S | k: re S → re S. -naxiom eq_re : ∀S:Alpha.re S → re S → CProp[0]. -ndefinition RE : Alpha → setoid. -#A; @(re A); @(eq_re A); ncases admit. nqed. - -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -alias id "carr" = "cic:/matita/ng/sets/setoids/carr.fix(0,0,1)". -unification hint 0 ≔ A : Alpha; - P1 ≟ refl ? (eq0 (RE A)), - P2 ≟ sym ? (eq0 (RE A)), - P3 ≟ trans ? (eq0 (RE A)), - X ≟ mk_setoid (re A) (mk_equivalence_relation ? (eq_re A) P1 P2 P3), - T ≟ acarr A -(*-----------------------------------------------------------------------*) ⊢ - carr X ≡ (re T). - -unification hint 0 ≔ A,a,b; - R ≟ RE A, - L ≟ re A -(* -------------------------------------------- *) ⊢ - eq_re A a b ≡ eq_rel L (eq0 R) a b. - notation < "a \sup ⋇" non associative with precedence 90 for @{ 'pk $a}. notation > "a ^ *" non associative with precedence 75 for @{ 'pk $a}. interpretation "star" 'pk a = (k ? a). @@ -185,16 +110,94 @@ interpretation "empty" 'empty_r = (z ?). notation > "'lang' S" non associative with precedence 90 for @{ Ω^(list $S) }. notation > "'Elang' S" non associative with precedence 90 for @{ 𝛀^(list $S) }. + +(* setoid support for re *) + +nlet rec eq_re (S:Alpha) (a,b : re S) on a : CProp[0] ≝ + match a with + [ z ⇒ match b with [ z ⇒ True | _ ⇒ False] + | e ⇒ match b with [ e ⇒ True | _ ⇒ False] + | s x ⇒ match b with [ s y ⇒ x = y | _ ⇒ False] + | c r1 r2 ⇒ match b with [ c s1 s2 ⇒ eq_re ? r1 s1 ∧ eq_re ? r2 s2 | _ ⇒ False] + | o r1 r2 ⇒ match b with [ o s1 s2 ⇒ eq_re ? r1 s1 ∧ eq_re ? r2 s2 | _ ⇒ False] + | k r1 ⇒ match b with [ k r2 ⇒ eq_re ? r1 r2 | _ ⇒ False]]. + +interpretation "eq_re" 'eq_low a b = (eq_re ? a b). + +ndefinition RE : Alpha → setoid. +#A; @(re A); @(eq_re A); +##[ #p; nelim p; /2/; +##| #p1; nelim p1; ##[##1,2: #p2; ncases p2; /2/; + ##|##2,3: #x p2; ncases p2; /2/; + ##|##4,5: #e1 e2 H1 H2 p2; ncases p2; /3/; #e3 e4; *; #; @; /2/; + ##|#r H p2; ncases p2; /2/;##] +##| #p1; nelim p1; + ##[ ##1,2: #y z; ncases y; ncases z; //; nnormalize; #; ncases (?:False); //; + ##| ##3: #a; #y z; ncases y; ncases z; /2/; nnormalize; #; ncases (?:False); //; + ##| ##4,5: #r1 r2 H1 H2 y z; ncases y; ncases z; //; nnormalize; + ##[##1,3,4,5,6,8: #; ncases (?:False); //;##] + #r1 r2 r3 r4; nnormalize; *; #H1 H2; *; #H3 H4; /3/; + ##| #r H y z; ncases y; ncases z; //; nnormalize; ##[##1,2,3: #; ncases (?:False); //] + #r2 r3; /3/; ##]##] +nqed. + +unification hint 0 ≔ A : Alpha; + S ≟ acarr A, + T ≟ carr S, + P1 ≟ refl ? (eq0 (RE A)), + P2 ≟ sym ? (eq0 (RE A)), + P3 ≟ trans ? (eq0 (RE A)), + X ≟ mk_setoid (re T) (mk_equivalence_relation ? (eq_re A) P1 P2 P3) +(*-----------------------------------------------------------------------*) ⊢ + carr X ≡ re T. -nlet rec flatten S (l : list (list S)) on l : list S ≝ -match l with [ nil ⇒ [ ] | cons w tl ⇒ w @ flatten ? tl ]. +unification hint 0 ≔ A:Alpha,a,b:re A; + R ≟ eq0 (RE A), + L ≟ re A +(* -------------------------------------------- *) ⊢ + eq_re A a b ≡ eq_rel L R a b. + +nlemma c_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A). +#A; napply (mk_binary_morphism … (λs1,s2:re A. s1 · s2)); +#a; nelim a; +##[##1,2: #a' b b'; ncases a'; nnormalize; /2/ by conj; +##|#x a' b b'; ncases a'; /2/ by conj; +##|##4,5: #r1 r2 IH1 IH2 a'; ncases a'; nnormalize; /2/ by conj; +##|#r IH a'; ncases a'; nnormalize; /2/ by conj; ##] +nqed. + +(* XXX This is the good format for hints about morphisms, fix the others *) +alias symbol "hint_decl" (instance 1) = "hint_decl_Type0". +unification hint 0 ≔ S:Alpha, A,B:re S; + MM ≟ mk_unary_morphism ?? + (λA:re S.mk_unary_morphism ?? (λB.A · B) (prop1 ?? (c_is_morph S A))) + (prop1 ?? (c_is_morph S)), + T ≟ RE S +(*--------------------------------------------------------------------------*) ⊢ + fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ A · B. + +nlemma o_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A). +#A; napply (mk_binary_morphism … (λs1,s2:re A. s1 + s2)); +#a; nelim a; +##[##1,2: #a' b b'; ncases a'; nnormalize; /2/ by conj; +##|#x a' b b'; ncases a'; /2/ by conj; +##|##4,5: #r1 r2 IH1 IH2 a'; ncases a'; nnormalize; /2/ by conj; +##|#r IH a'; ncases a'; nnormalize; /2/ by conj; ##] +nqed. + +unification hint 0 ≔ S:Alpha, A,B:re S; + MM ≟ mk_unary_morphism ?? + (λA:re S.mk_unary_morphism ?? (λB.A + B) (prop1 ?? (o_is_morph S A))) + (prop1 ?? (o_is_morph S)), + T ≟ RE S +(*--------------------------------------------------------------------------*) ⊢ + fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ A + B. + +(* end setoids support for re *) nlet rec conjunct S (l : list (list S)) (L : lang S) on l: CProp[0] ≝ match l with [ nil ⇒ True | cons w tl ⇒ w ∈ L ∧ conjunct ? tl L ]. -ndefinition sing_lang : ∀A:setoid.∀x:A.Ω^A ≝ λS.λx.{ w | x = w }. -interpretation "sing lang" 'singl x = (sing_lang ? x). - interpretation "subset construction with type" 'comprehension t \eta.x = (mk_powerclass t x). @@ -218,10 +221,6 @@ match r with notation "𝐋 term 70 E" non associative with precedence 75 for @{'L_re $E}. interpretation "in_l" 'L_re E = (L_re ? E). -notation "a || b" left associative with precedence 30 for @{'orb $a $b}. -ndefinition orb ≝ λa,b:bool. match a with [ true ⇒ true | _ ⇒ b ]. -interpretation "orb" 'orb a b = (orb a b). - ninductive pitem (S: Type[0]) : Type[0] ≝ pz: pitem S | pe: pitem S @@ -231,13 +230,6 @@ ninductive pitem (S: Type[0]) : Type[0] ≝ | po: pitem S → pitem S → pitem S | pk: pitem S → pitem S. -ndefinition pre ≝ λS.pitem S × bool. - -notation "\fst term 90 x" non associative with precedence 90 for @{'fst $x}. -interpretation "fst" 'fst x = (fst ? ? x). -notation > "\snd term 90 x" non associative with precedence 90 for @{'snd $x}. -interpretation "snd" 'snd x = (snd ? ? x). - interpretation "pstar" 'pk a = (pk ? a). interpretation "por" 'plus a b = (po ? a b). interpretation "pcat" 'pc a b = (pc ? a b). @@ -248,7 +240,62 @@ interpretation "ppatom" 'pp a = (pp ? a). ncoercion pc : ∀S.∀p:pitem S. pitem S → pitem S ≝ pc on _p : pitem ? to ∀_:?.?. interpretation "patom" 'ps a = (ps ? a). interpretation "pepsilon" 'epsilon = (pe ?). -interpretation "pempty" 'empty_r = (pz ?). +interpretation "pempty" 'empty_r = (pz ?). + +(* setoids for pitem *) +nlet rec eq_pitem (S : Alpha) (p1, p2 : pitem S) on p1 : CProp[0] ≝ + match p1 with + [ pz ⇒ match p2 with [ pz ⇒ True | _ ⇒ False] + | pe ⇒ match p2 with [ pe ⇒ True | _ ⇒ False] + | ps x ⇒ match p2 with [ ps y ⇒ x = y | _ ⇒ False] + | pp x ⇒ match p2 with [ pp y ⇒ x = y | _ ⇒ False] + | pc a1 a2 ⇒ match p2 with [ pc b1 b2 ⇒ eq_pitem ? a1 b1 ∧ eq_pitem ? a2 b2| _ ⇒ False] + | po a1 a2 ⇒ match p2 with [ po b1 b2 ⇒ eq_pitem ? a1 b1 ∧ eq_pitem ? a2 b2| _ ⇒ False] + | pk a ⇒ match p2 with [ pk b ⇒ eq_pitem ? a b | _ ⇒ False]]. + +interpretation "eq_pitem" 'eq_low a b = (eq_pitem ? a b). + +nlemma PITEM : ∀S:Alpha.setoid. +#S; @(pitem S); @(eq_pitem …); +##[ #p; nelim p; //; nnormalize; #; @; //; +##| #p; nelim p; ##[##1,2: #y; ncases y; //; ##|##3,4: #x y; ncases y; //; #; napply (?^-1); nassumption; + ##|##5,6: #r1 r2 H1 H2 p2; ncases p2; //; #s1 s2; nnormalize; *; #; @; /2/; + ##| #r H y; ncases y; //; nnormalize; /2/;##] +##| #x; nelim x; + ##[ ##1,2: #y z; ncases y; ncases z; //; nnormalize; #; ncases (?:False); //; + ##| ##3,4: #a; #y z; ncases y; ncases z; /2/; nnormalize; #; ncases (?:False); //; + ##| ##5,6: #r1 r2 H1 H2 y z; ncases y; ncases z; //; nnormalize; + ##[##1,2,5,6,7,8,4,10: #; ncases (?:False); //;##] + #r1 r2 r3 r4; nnormalize; *; #H1 H2; *; #H3 H4; /3/; + ##| #r H y z; ncases y; ncases z; //; nnormalize; ##[##1,2,3,4: #; ncases (?:False); //] + #r2 r3; /3/; ##]##] +nqed. + +alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". +unification hint 0 ≔ SS:Alpha; + S ≟ acarr SS, + A ≟ carr S, + P1 ≟ refl ? (eq0 (PITEM SS)), + P2 ≟ sym ? (eq0 (PITEM SS)), + P3 ≟ trans ? (eq0 (PITEM SS)), + R ≟ mk_setoid (pitem S) (mk_equivalence_relation (pitem A) (eq_pitem SS) P1 P2 P3) +(*---------------------------*)⊢ + carr R ≡ pitem A. + +unification hint 0 ≔ S:Alpha,a,b:pitem S; + R ≟ PITEM S, + L ≟ (pitem S) +(* -------------------------------------------- *) ⊢ + eq_pitem S a b ≡ eq_rel L (eq0 R) a b. + +(* end setoids for pitem *) + +ndefinition pre ≝ λS.pitem S × bool. + +notation "\fst term 90 x" non associative with precedence 90 for @{'fst $x}. +interpretation "fst" 'fst x = (fst ? ? x). +notation > "\snd term 90 x" non associative with precedence 90 for @{'snd $x}. +interpretation "snd" 'snd x = (snd ? ? x). notation > "|term 19 e|" non associative with precedence 70 for @{forget ? $e}. nlet rec forget (S: Alpha) (l : pitem S) on l: re S ≝ @@ -260,6 +307,7 @@ nlet rec forget (S: Alpha) (l : pitem S) on l: re S ≝ | pc E1 E2 ⇒ (|E1| · |E2|) | po E1 E2 ⇒ (|E1| + |E2|) | pk E ⇒ |E|^* ]. + notation < "|term 19 e|" non associative with precedence 70 for @{'forget $e}. interpretation "forget" 'forget a = (forget ? a). @@ -277,86 +325,27 @@ notation > "𝐋\p term 70 E" non associative with precedence 75 for @{'L_pi $E} notation "𝐋\sub(\p) term 70 E" non associative with precedence 75 for @{'L_pi $E}. interpretation "in_pl" 'L_pi E = (L_pi ? E). -(* The caml, as some patches for it *) -ncoercion setoid1_of_setoid : ∀s:setoid. setoid1 ≝ setoid1_of_setoid on _s: setoid to setoid1. - -alias symbol "hint_decl" (instance 1) = "hint_decl_CProp2". -unification hint 0 ≔ S : setoid, x,y; - SS ≟ LIST S, - TT ≟ setoid1_of_setoid SS -(*-----------------------------------------*) ⊢ - eq_list S x y ≡ eq_rel1 ? (eq1 TT) x y. - -unification hint 0 ≔ SS : setoid; - S ≟ carr SS, - TT ≟ setoid1_of_setoid (LIST SS) -(*-----------------------------------------------------------------*) ⊢ - list S ≡ carr1 TT. - -(* Ex setoid support *) -nlemma Sig: ∀S,T:setoid.∀P: S → (T → CPROP). - ∀y,z:T.y = z → (∀x.y=z → P x y = P x z) → (Ex S (λx.P x y)) =_1 (Ex S (λx.P x z)). -#S T P y z Q E; @; *; #x Px; @x; nlapply (E x Q); *; /2/; nqed. - -notation "∑" non associative with precedence 90 for @{Sig ?????}. - -nlemma test : ∀S:setoid. ∀ee: S ⇒_1 S ⇒_1 CPROP. - ∀x,y:setoid1_of_setoid S.x =_1 y → (Ex S (λw.ee x w ∧ True)) =_1 (Ex S (λw.ee y w ∧ True)). -#S m x y E; -napply (.=_1 (∑ E (λw,H.(H ╪_1 #)╪_1 #))). -napply #. -nqed. - -nlemma test2 : ∀S:setoid. ∀ee: S ⇒_1 S ⇒_1 CPROP. - ∀x,y:setoid1_of_setoid S.x =_1 y → - (True ∧ (Ex S (λw.ee x w ∧ True))) =_1 (True ∧ (Ex S (λw.ee y w ∧ True))). -#S m x y E; -napply (.=_1 #╪_1(∑ E (λw,H.(H ╪_1 #) ╪_1 #))). -napply #. -nqed. - -nlemma ex_setoid : ∀S:setoid.(S ⇒_1 CPROP) → setoid. -#T P; @ (Ex T (λx:T.P x)); @; -##[ #H1 H2; napply True |##*: //; ##] -nqed. - -unification hint 0 ≔ T,P ; S ≟ (ex_setoid T P) ⊢ - Ex T (λx:T.P x) ≡ carr S. - -nlemma test3 : ∀S:setoid. ∀ee: S ⇒_1 S ⇒_1 CPROP. - ∀x,y:setoid1_of_setoid S.x =_1 y → - ((Ex S (λw.ee x w ∧ True) ∨ True)) =_1 ((Ex S (λw.ee y w ∧ True) ∨ True)). -#S m x y E; -napply (.=_1 (∑ E (λw,H.(H ╪_1 #) ╪_1 #)) ╪_1 #). -napply #. -nqed. -(* Ex setoid support end *) - +(* set support for 𝐋\p *) ndefinition L_pi_ext : ∀S:Alpha.∀r:pitem S.Elang S. #S r; @(𝐋\p r); #w1 w2 E; nelim r; -##[ /2/; -##| /2/; +##[ ##1,2: /2/; ##| #x; @; *; ##| #x; @; #H; nchange in H with ([?] =_0 ?); ##[ napply ((.=_0 H) E); ##] napply ((.=_0 H) E^-1); -##| #e1 e2 H1 H2; +##| #e1 e2 H1 H2; (* nchange in match (w1 ∈ 𝐋\p (?·?)) with ((∃_.?)∨?); - nchange in match (w2 ∈ 𝐋\p (?·?)) with ((∃_.?)∨?); + nchange in match (w2 ∈ 𝐋\p (?·?)) with ((∃_.?)∨?); good! *) napply (.= (#‡H2)); - napply (.=_1 (∑ E (λx1,H1.∑ E (λx2,H2.?)))╪_1 #); ##[ - ncut ((w1 = (x1@x2)) = (w2 = (x1@x2)));##[ - @; #X; ##[ napply ((.= H1^-1) X) | napply ((.= H2) X) ] ##] #X; - napply ( (X‡#)‡#); ##] - napply #; -##| #e1 e2 H1 H2; - nnormalize in ⊢ (???%%); - napply (H1‡H2); -##| #e H; nnormalize in ⊢ (???%%); - napply (.=_1 (∑ E (λx1,H1.∑ E (λx2,H2.?)))); ##[ - ncut ((w1 = (x1@x2)) = (w2 = (x1@x2)));##[ - @; #X; ##[ napply ((.= H1^-1) X) | napply ((.= H2) X) ] ##] #X; - napply ((X‡#)‡#); ##] - napply #;##] + ncut (∀x1,x2. (w1 = (x1@x2)) = (w2 = (x1@x2)));##[ + #x1 x2; @; #X; ##[ napply ((.= E^-1) X) | napply ((.= E) X) ] ##] #X; + napply ((∑w1,w2. X w1 w2 / H ; (H╪_1#)╪_1#) ╪_1 #); +##| #e1 e2 H1 H2; napply (H1‡H2); (* good! *) +##| #e H; + ncut (∀x1,x2.(w1 = (x1@x2)) = (w2 = (x1@x2)));##[ + #x1 x2; @; #X; ##[ napply ((.= E^-1) X) | napply ((.= E) X) ] ##] #X; + (* nnormalize in ⊢ (???%%); good! (but a bit too hard) *) + napply (∑w1,w2. X w1 w2 / H ; (H╪_1#)╪_1#); +##] nqed. unification hint 0 ≔ S : Alpha,e : pitem S; @@ -364,6 +353,8 @@ unification hint 0 ≔ S : Alpha,e : pitem S; X ≟ (mk_ext_powerclass SS (𝐋\p e) (ext_prop SS (L_pi_ext S e))) (*-----------------------------------------------------------------*)⊢ ext_carr SS X ≡ 𝐋\p e. + +(* end set support for 𝐋\p *) ndefinition epsilon ≝ λS:Alpha.λb.match b return λ_.lang S with [ true ⇒ { [ ] } | _ ⇒ ∅ ]. @@ -379,10 +370,10 @@ interpretation "L_pr" 'L_pi E = (L_pr ? E). nlemma append_eq_nil : ∀S:setoid.∀w1,w2:list S. [ ] = w1 @ w2 → w1 = [ ]. #S w1; ncases w1; //. nqed. -(* lemma 12 *) +(* lemma 12 *) (* XXX: a case where Leibnitz equality could be exploited for H *) nlemma epsilon_in_true : ∀S:Alpha.∀e:pre S. [ ] ∈ 𝐋\p e = (\snd e = true). -#S r; ncases r; #e b; @; ##[##2: #H; nrewrite > H; @2; /2/; ##] ncases b;//; -*; ##[##2:*] nelim e; +#S r; ncases r; #e b; @; ##[##2: #H; ncases b in H; ##[##2:*] #; @2; /2/; ##] +ncases b; //; *; ##[##2:*] nelim e; ##[ ##1,2: *; ##| #c; *; ##| #c; *| ##7: #p H; ##| #r1 r2 H G; *; ##[##2: nassumption; ##] ##| #r1 r2 H1 H2; *; /2/ by {}] @@ -461,18 +452,12 @@ nchange in match (ϵ false) with ∅; ##| napply (.= (cup0 ? {[]})^-1); napply cupC; ##] nqed. -(* XXX move somewere else *) -ndefinition if': ∀A,B:CPROP. A = B → A → B. -#A B; *; /2/. nqed. - -ncoercion if : ∀A,B:CPROP. ∀p:A = B. A → B ≝ if' on _p : eq_rel1 ???? to ∀_:?.?. - (* theorem 16: 2 *) nlemma oplus_cup : ∀S:Alpha.∀e1,e2:pre S.𝐋\p (e1 ⊕ e2) = 𝐋\p e1 ∪ 𝐋\p e2. -#S r1; ncases r1; #e1 b1 r2; ncases r2; #e2 b2; +#S r1; ncases r1; #e1 b1 r2; ncases r2; #e2 b2; (* oh my! nwhd in ⊢ (???(??%)?); nchange in ⊢(???%?) with (𝐋\p (e1 + e2) ∪ ϵ (b1 || b2)); -nchange in ⊢(???(??%?)?) with (𝐋\p (e1) ∪ 𝐋\p (e2)); +nchange in ⊢(???(??%?)?) with (𝐋\p (e1) ∪ 𝐋\p (e2)); *) napply (.=_1 #╪_1 (epsilon_or ???)); napply (.=_1 (cupA…)^-1); napply (.=_1 (cupA…)╪_1#); @@ -482,86 +467,99 @@ napply (.=_1 (cupA…)); //; nqed. -FINQUI - -manca setoide per pair (e pre) -nlemma odotEt : - ∀S:Alpha.∀e1,e2:pitem S.∀b2. 〈e1,true〉 ⊙ 〈e2,b2〉 = ?.〈e1 · \fst (•e2),b2 || \snd (•e2)〉. -#S e1 e2 b2; nnormalize; ncases (•e2); //; nqed. +(* XXX problem: auto does not find # (refl) when it has a concrete == *) +nlemma odotEt : ∀S:Alpha.∀e1,e2:pitem S.∀b2:bool. + 〈e1,true〉 ⊙ 〈e2,b2〉 = 〈e1 · \fst (•e2),b2 || \snd (•e2)〉. +#S e1 e2 b2; ncases b2; @; /3/ by refl, conj, I; nqed. -nlemma LcatE : ∀S.∀e1,e2:pitem S.𝐋\p (e1 · e2) = 𝐋\p e1 · 𝐋 .|e2| ∪ 𝐋\p e2. //; nqed. +(* +nlemma LcatE : ∀S:Alpha.∀e1,e2:pitem S. + 𝐋\p (e1 · e2) = 𝐋\p e1 · 𝐋 |e2| ∪ 𝐋\p e2. //; nqed. +*) -nlemma cup_dotD : ∀S.∀p,q,r:lang S.(p ∪ q) · r = (p · r) ∪ (q · r). -#S p q r; napply extP; #w; nnormalize; @; +nlemma cup_dotD : ∀S:Alpha.∀p,q,r:lang S.(p ∪ q) · r = (p · r) ∪ (q · r). +#S p q r; napply ext_set; #w; nnormalize; @; ##[ *; #x; *; #y; *; *; #defw; *; /7/ by or_introl, or_intror, ex_intro, conj; ##| *; *; #x; *; #y; *; *; /7/ by or_introl, or_intror, ex_intro, conj; ##] nqed. -nlemma erase_dot : ∀S.∀e1,e2:pitem S.𝐋 .|e1 · e2| = 𝐋 .|e1| · 𝐋 .|e2|. -#S e1 e2; napply extP; nnormalize; #w; @; *; #w1; *; #w2; *; *; /7/ by ex_intro, conj; +nlemma erase_dot : ∀S:Alpha.∀e1,e2:pitem S.𝐋 |e1 · e2| = 𝐋 |e1| · 𝐋 |e2|. +#S e1 e2; napply ext_set; nnormalize; #w; @; *; #w1; *; #w2; *; *; /7/ by ex_intro, conj; nqed. -nlemma erase_plus : ∀S.∀e1,e2:pitem S.𝐋 .|e1 + e2| = 𝐋 .|e1| ∪ 𝐋 .|e2|. -#S e1 e2; napply extP; nnormalize; #w; @; *; /4/ by or_introl, or_intror; nqed. +nlemma erase_plus : ∀S:Alpha.∀e1,e2:pitem S.𝐋 |e1 + e2| = 𝐋 |e1| ∪ 𝐋 |e2|. +#S e1 e2; napply ext_set; nnormalize; #w; @; *; /4/ by or_introl, or_intror; nqed. -nlemma erase_star : ∀S.∀e1:pitem S.𝐋 .|e1|^* = 𝐋 .|e1^*|. //; nqed. +nlemma erase_star : ∀S:Alpha.∀e1:pitem S.𝐋 |e1|^* = 𝐋 |e1^*|. //; nqed. -ndefinition substract := λS.λp,q:word S → Prop.λw.p w ∧ ¬ q w. -interpretation "substract" 'minus a b = (substract ? a b). +nlemma mem_single : ∀S:setoid.∀a,b:S. a ∈ {(b)} → a = b. +#S a b; nnormalize; /2/; nqed. -nlemma cup_sub: ∀S.∀a,b:word S → Prop. ¬ (a []) → a ∪ (b - {[]}) = (a ∪ b) - {[]}. -#S a b c; napply extP; #w; nnormalize; @; *; /4/; *; /4/; nqed. +nlemma cup_sub: ∀S.∀A,B:𝛀^S.∀x. ¬ (x ∈ A) → A ∪ (B - {(x)}) = (A ∪ B) - {(x)}. +#S A B x H; napply ext_set; #w; @; +##[ *; ##[ #wa; @; ##[@;//] #H2; napply H; napply (. (mem_single ??? H2)^-1╪_1#); //] + *; #wb nwn; @; ##[@2;//] //; +##| *; *; ##[ #wa nwn; @; //] #wb nwn; @2; @; //;##] +nqed. -nlemma sub0 : ∀S.∀a:word S → Prop. a - {} = a. -#S a; napply extP; #w; nnormalize; @; /3/; *; //; nqed. +nlemma sub0 : ∀S.∀a:Ω^S. a - ∅ = a. +#S a; napply ext_set; #w; nnormalize; @; /3/; *; //; nqed. -nlemma subK : ∀S.∀a:word S → Prop. a - a = {}. -#S a; napply extP; #w; nnormalize; @; *; /2/; nqed. +nlemma subK : ∀S.∀a:Ω^S. a - a = ∅. +#S a; napply ext_set; #w; nnormalize; @; *; /2/; nqed. -nlemma subW : ∀S.∀a,b:word S → Prop.∀w.(a - b) w → a w. +nlemma subW : ∀S.∀a,b:Ω^S.∀w.w ∈ (a - b) → w ∈ a. #S a b w; nnormalize; *; //; nqed. -nlemma erase_bull : ∀S.∀a:pitem S. .|\fst (•a)| = .|a|. +nlemma erase_bull : ∀S:Alpha.∀a:pitem S. |\fst (•a)| = |a|. #S a; nelim a; // by {}; -##[ #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (.|e1| · .|e2|); - nrewrite < IH1; nrewrite < IH2; - nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊙ 〈e2,false〉)); - ncases (•e1); #e3 b; ncases b; nnormalize; - ##[ ncases (•e2); //; ##| nrewrite > IH2; //] -##| #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (.|e1| + .|e2|); - nrewrite < IH2; nrewrite < IH1; - nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊕ •e2)); - ncases (•e1); ncases (•e2); //; -##| #e IH; nchange in ⊢ (???%) with (.|e|^* ); nrewrite < IH; - nchange in ⊢ (??(??%)?) with (\fst (•e))^*; //; ##] -nqed. - -nlemma eta_lp : ∀S.∀p:pre S.𝐋\p p = 𝐋\p 〈\fst p, \snd p〉. +##[ #e1 e2 IH1 IH2; + napply (?^-1); + napply (.=_0 (IH1^-1)╪_0 (IH2^-1)); + nchange in match (•(e1 · ?)) with (?⊙?); + ncases (•e1); #e3 b; ncases b; ##[ nnormalize; ncases (•e2); /3/ by refl, conj] + napply (.=_0 #╪_0 (IH2)); //; +##| #e1 e2 IH1 IH2; napply (?^-1); + napply (.=_0 (IH1^-1)╪_0(IH2^-1)); + nchange in match (•(e1+?)) with (?⊕?); + ncases (•e1); ncases (•e2); //] +nqed. + +(* +nlemma eta_lp : ∀S:Alpha.∀p:pre S. 𝐋\p p = 𝐋\p 〈\fst p, \snd p〉. #S p; ncases p; //; nqed. +*) -nlemma epsilon_dot: ∀S.∀p:word S → Prop. {[]} · p = p. -#S e; napply extP; #w; nnormalize; @; ##[##2: #Hw; @[]; @w; /3/; ##] -*; #w1; *; #w2; *; *; #defw defw1 Hw2; nrewrite < defw; nrewrite < defw1; -napply Hw2; nqed. +(* XXX coercion ext_carr non applica *) +nlemma epsilon_dot: ∀S:Alpha.∀p:Elang S. {[]} · (ext_carr ? p) = p. +#S e; napply ext_set; #w; @; ##[##2: #Hw; @[]; @w; @; //; @; //; napply #; (* XXX auto *) ##] +*; #w1; *; #w2; *; *; #defw defw1 Hw2; +napply (. defw╪_1#); +napply (. ((defw1 : [ ] = ?)^-1 ╪_0 #)╪_1#); +napply Hw2; +nqed. (* theorem 16: 1 → 3 *) -nlemma odot_dot_aux : ∀S.∀e1,e2: pre S. - 𝐋\p (•(\fst e2)) = 𝐋\p (\fst e2) ∪ 𝐋 .|\fst e2| → - 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 .|\fst e2| ∪ 𝐋\p e2. +nlemma odot_dot_aux : ∀S:Alpha.∀e1,e2: pre S. + 𝐋\p (•(\fst e2)) = 𝐋\p (\fst e2) ∪ 𝐋 |\fst e2| → + 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 |\fst e2| ∪ 𝐋\p e2. #S e1 e2 th1; ncases e1; #e1' b1'; ncases b1'; -##[ nwhd in ⊢ (??(??%)?); nletin e2' ≝ (\fst e2); nletin b2' ≝ (\snd e2); +##[ nchange in match (〈?,true〉⊙?) with 〈?,?〉; + nletin e2' ≝ (\fst e2); nletin b2' ≝ (\snd e2); nletin e2'' ≝ (\fst (•(\fst e2))); nletin b2'' ≝ (\snd (•(\fst e2))); - nchange in ⊢ (??%?) with (?∪?); - nchange in ⊢ (??(??%?)?) with (?∪?); - nchange in match (𝐋\p 〈?,?〉) with (?∪?); - nrewrite > (epsilon_or …); nrewrite > (cupC ? (ϵ ?)…); - nrewrite > (cupA …);nrewrite < (cupA ?? (ϵ?)…); - nrewrite > (?: 𝐋\p e2'' ∪ ϵ b2'' = 𝐋\p e2' ∪ 𝐋 .|e2'|); ##[##2: - nchange with (𝐋\p 〈e2'',b2''〉 = 𝐋\p e2' ∪ 𝐋 .|e2'|); - ngeneralize in match th1; - nrewrite > (eta_lp…); #th1; nrewrite > th1; //;##] + napply (.=_1 (# ╪_1 (epsilon_or …))); (* XXX … is too slow if combined with .= *) + nchange in match b2'' with b2''; (* XXX some unfoldings happened *) + nchange in match b2' with b2'; + napply (.=_1 (# ╪_1 (cupC …))); napply (.=_1 (cupA …)); + napply (.=_1 (# ╪_1 (cupA …)^-1)); (* XXX slow, but not because of disamb! *) + ncut (𝐋\p e2'' ∪ ϵ b2'' = 𝐋\p e2' ∪ 𝐋 |e2'|); ##[ + nchange with (𝐋\p 〈e2'',b2''〉 = 𝐋\p e2' ∪ 𝐋 |e2'|); + napply (?^-1); napply (.=_1 th1^-1); //;##] #E; + napply (.=_1 (# ╪_1 (E ╪_1 #))); + STOP + nrewrite > (eta_lp ? e2); nchange in match (𝐋\p 〈\fst e2,?〉) with (𝐋\p e2'∪ ϵ b2'); nrewrite > (cup_dotD …); nrewrite > (epsilon_dot…);