X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fre%2Fre.ma;h=40947401f860939ceea720b2363c394a9671aef7;hb=e880d6eab5e1700f4a625ddcd7d0fa8f0cce2dcc;hp=e939cc04f52cc08e2894bbe78bddfe59222586bc;hpb=5dcae34c6e44a40e236db641f59ddb096d1a16ec;p=helm.git diff --git a/helm/software/matita/nlibrary/re/re.ma b/helm/software/matita/nlibrary/re/re.ma index e939cc04f..40947401f 100644 --- a/helm/software/matita/nlibrary/re/re.ma +++ b/helm/software/matita/nlibrary/re/re.ma @@ -12,20 +12,16 @@ (* *) (**************************************************************************) -(*include "logic/connectives.ma".*) -(*include "logic/equality.ma".*) include "datatypes/list.ma". include "datatypes/pairs.ma". include "arithmetics/nat.ma". -(*include "Plogic/equality.ma".*) +interpretation "iff" 'iff a b = (iff a b). -nrecord Alpha : Type[1] ≝ - { carr :> Type[0]; +nrecord Alpha : Type[1] ≝ { carr :> Type[0]; eqb: carr → carr → bool; - eqb_true: ∀x,y. (eqb x y = true) = (x=y); - eqb_false: ∀x,y. (eqb x y = false) = (x≠y) - }. + eqb_true: ∀x,y. (eqb x y = true) ↔ (x = y) +}. notation "a == b" non associative with precedence 45 for @{ 'eqb $a $b }. interpretation "eqb" 'eqb a b = (eqb ? a b). @@ -61,50 +57,50 @@ interpretation "epsilon" 'epsilon = (e ?). notation "∅" non associative with precedence 90 for @{ 'empty }. interpretation "empty" 'empty = (z ?). -notation > "w ∈ E" non associative with precedence 45 for @{in_l ? $w $E}. -ninductive in_l (S : Alpha) : word S → re S → Prop ≝ - | in_e: [ ] ∈ ϵ - | in_s: ∀x:S. [x] ∈ `x - | in_c: ∀w1,w2,e1,e2. w1 ∈ e1 → w2 ∈ e2 → w1@w2 ∈ e1 · e2 - | in_o1: ∀w,e1,e2. w ∈ e1 → w ∈ e1 + e2 - | in_o2: ∀w,e1,e2. w ∈ e2 → w ∈ e1 + e2 - | in_ke: ∀e. [ ] ∈ e^* - | in_ki: ∀w1,w2,e. w1 ∈ e → w2 ∈ e^* → w1@w2 ∈ e^*. -interpretation "in_l" 'mem w l = (in_l ? w l). +nlet rec flatten (S : Alpha) (l : list (word S)) on l : word S ≝ +match l with [ nil ⇒ [ ] | cons w tl ⇒ w @ flatten ? tl ]. -(* -notation "a || b" left associative with precedence 30 for @{'orb $a $b}. -interpretation "orb" 'orb a b = (orb a b). +nlet rec conjunct (S : Alpha) (l : list (word S)) (r : word S → Prop) on l: Prop ≝ +match l with [ nil ⇒ ? | cons w tl ⇒ r w ∧ conjunct ? tl r ]. napply True. nqed. -notation "a && b" left associative with precedence 40 for @{'andb $a $b}. -interpretation "andb" 'andb a b = (andb a b). +ndefinition empty_lang ≝ λS.λw:word S.False. +notation "{}" non associative with precedence 90 for @{'empty_lang}. +interpretation "empty lang" 'empty_lang = (empty_lang ?). -nlet rec weq (S : Alpha) (l1, l2 : word S) on l1 : bool ≝ -match l1 with -[ nil ⇒ match l2 with [ nil ⇒ true | cons _ _ ⇒ false ] -| cons x xs ⇒ match l2 with [ nil ⇒ false | cons y ys ⇒ (x == y) && weq S xs ys]]. +ndefinition sing_lang ≝ λS.λx,w:word S.x=w. +notation "{x}" non associative with precedence 90 for @{'sing_lang $x}. +interpretation "sing lang" 'sing_lang x = (sing_lang ? x). -ndefinition if_then_else ≝ λT:Type[0].λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. -notation > "'if' term 19 e 'then' term 19 t 'else' term 19 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -interpretation "Formula if_then_else" 'if_then_else e t f = (if_then_else ? e t f). +ndefinition union : ∀S,l1,l2,w.Prop ≝ λS.λl1,l2.λw:word S.l1 w ∨ l2 w. +interpretation "union lang" 'union a b = (union ? a b). -*) +ndefinition cat : ∀S,l1,l2,w.Prop ≝ + λS.λl1,l2.λw:word S.∃w1,w2.w1 @ w2 = w ∧ l1 w1 ∧ l2 w2. +interpretation "cat lang" 'pc a b = (cat ? a b). -nlemma in_l_inv_e: - ∀S.∀w:word S. w ∈ ∅ → w = []. - #S; #w; #H; ninversion H; #; ndestruct; -nqed. +ndefinition star ≝ λS.λl.λw:word S.∃lw.flatten ? lw = w ∧ conjunct ? lw l. +interpretation "star lang" 'pk l = (star ? l). -nlemma in_l_inv_s: ∀S.∀w:word S.∀x. w ∈ `x → w = [x]. -#S w x H; ninversion H; #; ndestruct; //. -nqed. +notation > "𝐋 term 70 E" non associative with precedence 75 for @{in_l ? $E}. +nlet rec in_l (S : Alpha) (r : re S) on r : word S → Prop ≝ +match r with +[ z ⇒ {} +| e ⇒ { [ ] } +| s x ⇒ { [x] } +| c r1 r2 ⇒ 𝐋 r1 · 𝐋 r2 +| o r1 r2 ⇒ 𝐋 r1 ∪ 𝐋 r2 +| k r1 ⇒ (𝐋 r1) ^*]. +notation "𝐋 term 70 E" non associative with precedence 75 for @{'in_l $E}. +interpretation "in_l" 'in_l E = (in_l ? E). +interpretation "in_l mem" 'mem w l = (in_l ? l w). -nlemma in_l_inv_c: - ∀S.∀w:word S.∀E1,E2. w ∈ E1 · E2 → ∃w1.∃w2. w = w1@w2 ∧ w1 ∈ E1 ∧ w2 ∈ E2. -#S w e1 e2 H; ninversion H; ##[##1,2,4,5,6,7: #; ndestruct; ##] -#w1 w2 r1 r2 w1r1 w2r2; #_; #_; #defw defe; @w1; @w2; ndestruct; /3/. -nqed. +notation "a || b" left associative with precedence 30 for @{'orb $a $b}. +interpretation "orb" 'orb a b = (orb a b). + +ndefinition if_then_else ≝ λT:Type[0].λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. +notation > "'if' term 19 e 'then' term 19 t 'else' term 19 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +interpretation "if_then_else" 'if_then_else e t f = (if_then_else ? e t f). ninductive pitem (S: Alpha) : Type[0] ≝ pz: pitem S @@ -129,17 +125,17 @@ interpretation "patom" 'ps a = (ps ? a). interpretation "pepsilon" 'epsilon = (pe ?). interpretation "pempty" 'empty = (pz ?). -notation > ".|term 19 e|" non associative with precedence 90 for @{forget ? $e}. +notation > "|term 19 e|" non associative with precedence 70 for @{forget ? $e}. nlet rec forget (S: Alpha) (l : pitem S) on l: re S ≝ match l with [ pz ⇒ ∅ | pe ⇒ ϵ | ps x ⇒ `x | pp x ⇒ `x - | pc E1 E2 ⇒ .|E1| .|E2| - | po E1 E2 ⇒ .|E1| + .|E2| - | pk E ⇒ .|E|^* ]. -notation < ".|term 19 e|" non associative with precedence 90 for @{'forget $e}. + | pc E1 E2 ⇒ (|E1| · |E2|) + | po E1 E2 ⇒ (|E1| + |E2|) + | pk E ⇒ |E|^* ]. +notation < "|term 19 e|" non associative with precedence 70 for @{'forget $e}. interpretation "forget" 'forget a = (forget ? a). notation "\fst term 90 x" non associative with precedence 90 for @{'fst $x}. @@ -147,53 +143,53 @@ interpretation "fst" 'fst x = (fst ? ? x). notation > "\snd term 90 x" non associative with precedence 90 for @{'snd $x}. interpretation "snd" 'snd x = (snd ? ? x). -notation > "w .∈ E" non associative with precedence 40 for @{in_pl ? $w $E}. -ninductive in_pl (S: Alpha): word S → pitem S → Prop ≝ - | in_pp: ∀x:S.[x] .∈ `.x - | in_pc1: ∀w1,w2:word S.∀e1,e2:pitem S. - w1 .∈ e1 → w2 ∈ .|e2| → (w1@w2) .∈ e1 · e2 - | in_pc2: ∀w,e1,e2. w .∈ e2 → w .∈ e1 · e2 - | in_po1: ∀w,e1,e2. w .∈ e1 → w .∈ e1 + e2 - | in_po2: ∀w,e1,e2. w .∈ e2 → w .∈ e1 + e2 - | in_pki: ∀w1,w2,e. w1 .∈ e → w2 ∈ .|e|^* → (w1@w2) .∈ e^*. - -interpretation "in_pl" 'in_pl w l = (in_pl ? w l). - -ndefinition in_prl ≝ λS : Alpha.λw:word S.λp:pre S. - (w = [ ] ∧ \snd p = true) ∨ w .∈ (\fst p). +notation > "𝐋\p\ term 70 E" non associative with precedence 75 for @{in_pl ? $E}. +nlet rec in_pl (S : Alpha) (r : pitem S) on r : word S → Prop ≝ +match r with +[ pz ⇒ {} +| pe ⇒ {} +| ps _ ⇒ {} +| pp x ⇒ { [x] } +| pc r1 r2 ⇒ 𝐋\p\ r1 · 𝐋 |r2| ∪ 𝐋\p\ r2 +| po r1 r2 ⇒ 𝐋\p\ r1 ∪ 𝐋\p\ r2 +| pk r1 ⇒ 𝐋\p\ r1 · 𝐋 (|r1|^* ) ]. +notation > "𝐋\p term 70 E" non associative with precedence 75 for @{'in_pl $E}. +notation "𝐋\sub(\p) term 70 E" non associative with precedence 75 for @{'in_pl $E}. +interpretation "in_pl" 'in_pl E = (in_pl ? E). +interpretation "in_pl mem" 'mem w l = (in_pl ? l w). + +ndefinition epsilon ≝ λS,b.if b then { ([ ] : word S) } else {}. + +interpretation "epsilon" 'epsilon = (epsilon ?). +notation < "ϵ b" non associative with precedence 90 for @{'app_epsilon $b}. +interpretation "epsilon lang" 'app_epsilon b = (epsilon ? b). + +ndefinition in_prl ≝ λS : Alpha.λp:pre S. 𝐋\p (\fst p) ∪ ϵ (\snd p). -notation > "w .∈ E" non associative with precedence 40 for @{'in_pl $w $E}. -notation < "w\shy .∈\shy E" non associative with precedence 40 for @{'in_pl $w $E}. -interpretation "in_prl" 'in_pl w l = (in_prl ? w l). - -interpretation "iff" 'iff a b = (iff a b). - -nlemma append_eq_nil : - ∀S.∀w1,w2:word S. [ ] = w1 @ w2 → w1 = [ ]. -#S w1; nelim w1; //. #x tl IH w2; nnormalize; #abs; ndestruct; -nqed. - -nlemma append_eq_nil_r : - ∀S.∀w1,w2:word S. [ ] = w1 @ w2 → w2 = [ ]. -#S w1; nelim w1; ##[ #w2 H; nrewrite > H; // ] -#x tl IH w2; nnormalize; #abs; ndestruct; +interpretation "in_prl mem" 'mem w l = (in_prl ? l w). +interpretation "in_prl" 'in_pl E = (in_prl ? E). + +nlemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = [ ] → w1 = [ ]. +#S w1; nelim w1; //. #x tl IH w2; nnormalize; #abs; ndestruct; nqed. + +(* lemma 12 *) +nlemma epsilon_in_true : ∀S.∀e:pre S. [ ] ∈ e ↔ \snd e = true. +#S r; ncases r; #e b; @; ##[##2: #H; nrewrite > H; @2; /2/; ##] ncases b;//; +nnormalize; *; ##[##2:*] nelim e; +##[ ##1,2: *; ##| #c; *; ##| #c; nnormalize; #; ndestruct; ##| ##7: #p H; +##| #r1 r2 H G; *; ##[##2: /3/ by or_intror] +##| #r1 r2 H1 H2; *; /3/ by or_intror, or_introl; ##] +*; #w1; *; #w2; *; *; #defw1; nrewrite > (append_eq_nil … w1 w2 …); /3/ by {};//; nqed. -nlemma lemma16 : - ∀S.∀e:pre S. [ ] .∈ e ↔ \snd e = true. -#S p; ncases p; #e b; @; ##[##2: #H; nrewrite > H; @; @; //. ##] -ncases b; //; *; ##[*; //] nelim e; -##[##1,2: #abs; ninversion abs; #; ndestruct; -##|##3,4: #x abs; ninversion abs; #; ndestruct; -##|#p1 p2 H1 H2 H; ninversion H; ##[##1,3,4,5,6: #; ndestruct; /2/. ##] - #w1 w2 r1 r2 w1r1 w2fr2 H3 H4 Ep1p2; ndestruct; - nrewrite > (append_eq_nil … H4) in w1r1; /2/ by {}; -##|#r1 r2 H1 H2 H; ninversion H; #; ndestruct; /2/ by {}; -##|#r H1 H2; ninversion H2; ##[##1,2,3,4,5: #; ndestruct; ##] - #w1 w2 r1 w1r1 w1er1 H11 H21 H31; - nrewrite > (append_eq_nil … H21) in w1r1 H1; - nrewrite > (?: r = r1); /2/ by {}; - ndestruct; //. ##] +nlemma not_epsilon_lp : ∀S:Alpha.∀e:pitem S. ¬ ((𝐋\p e) [ ]). +#S e; nelim e; nnormalize; /2/ by nmk; +##[ #; @; #; ndestruct; +##| #r1 r2 n1 n2; @; *; /2/; *; #w1; *; #w2; *; *; #H; + nrewrite > (append_eq_nil …H…); /2/; +##| #r1 r2 n1 n2; @; *; /2/; +##| #r n; @; *; #w1; *; #w2; *; *; #H; + nrewrite > (append_eq_nil …H…); /2/;##] nqed. ndefinition lo ≝ λS:Alpha.λa,b:pre S.〈\fst a + \fst b,\snd a || \snd b〉. @@ -202,10 +198,9 @@ interpretation "oplus" 'oplus a b = (lo ? a b). ndefinition lc ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λa,b:pre S. match a with [ mk_pair e1 b1 ⇒ - match b with [ mk_pair e2 b2 ⇒ match b1 with - [ false ⇒ 〈e1 · e2, b2〉 - | true ⇒ match bcast ? e2 with [ mk_pair e2' b2' ⇒ 〈e1 · e2', b2 || b2'〉 ]]]]. + [ false ⇒ 〈e1 · \fst b, \snd b〉 + | true ⇒ 〈e1 · \fst (bcast ? (\fst b)),\snd b || \snd (bcast ? (\fst b))〉]]. notation < "a ⊙ b" left associative with precedence 60 for @{'lc $op $a $b}. interpretation "lc" 'lc op a b = (lc ? op a b). @@ -215,9 +210,9 @@ ndefinition lk ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λa:pre S. match a with [ mk_pair e1 b1 ⇒ match b1 with [ false ⇒ 〈e1^*, false〉 - | true ⇒ match bcast ? e1 with [ mk_pair e1' b1' ⇒ 〈e1'^*, true〉 ]]]. + | true ⇒ 〈(\fst (bcast ? e1))^*, true〉]]. -notation < "a \sup ⊛" non associative with precedence 90 for @{'lk ? $a}. +notation < "a \sup ⊛" non associative with precedence 90 for @{'lk $op $a}. interpretation "lk" 'lk op a = (lk ? op a). notation > "a^⊛" non associative with precedence 90 for @{'lk eclose $a}. @@ -230,7 +225,7 @@ nlet rec eclose (S: Alpha) (E: pitem S) on E : pre S ≝ | pp x ⇒ 〈 `.x, false 〉 | po E1 E2 ⇒ •E1 ⊕ •E2 | pc E1 E2 ⇒ •E1 ⊙ 〈 E2, false 〉 - | pk E ⇒ 〈E,true〉^⊛]. + | pk E ⇒ 〈(\fst (•E))^*,true〉]. notation < "• x" non associative with precedence 60 for @{'eclose $x}. interpretation "eclose" 'eclose x = (eclose ? x). notation > "• x" non associative with precedence 60 for @{'eclose $x}. @@ -238,15 +233,297 @@ notation > "• x" non associative with precedence 60 for @{'eclose $x}. ndefinition reclose ≝ λS:Alpha.λp:pre S.let p' ≝ •\fst p in 〈\fst p',\snd p || \snd p'〉. interpretation "reclose" 'eclose x = (reclose ? x). -nlemma lemma19_2 : - ∀S:Alpha.∀e1,e2:pre S.∀w. w .∈ e1 ⊕ e2 → w .∈ e1 ∨ w .∈ e2. -#S e1 e2 w H; nnormalize in H; ncases H; -##[ *; #defw; ncases e1; #p b; ncases b; nnormalize; - ##[ #_; @1; @1; /2/ by conj; - ##| #H1; @2; @1; /2/ by conj; ##] -##| #H1; ninversion H1; #; ndestruct; /4/ by or_introl, or_intror; ##] +ndefinition eq_f1 ≝ λS.λa,b:word S → Prop.∀w.a w ↔ b w. +notation > "A =1 B" non associative with precedence 45 for @{'eq_f1 $A $B}. +notation "A =\sub 1 B" non associative with precedence 45 for @{'eq_f1 $A $B}. +interpretation "eq f1" 'eq_f1 a b = (eq_f1 ? a b). + +naxiom extP : ∀S.∀p,q:word S → Prop.(p =1 q) → p = q. + +nlemma epsilon_or : ∀S:Alpha.∀b1,b2. ϵ(b1 || b2) = ϵ b1 ∪ ϵ b2. ##[##2: napply S] +#S b1 b2; ncases b1; ncases b2; napply extP; #w; nnormalize; @; /2/; *; //; *; +nqed. + +nlemma cupA : ∀S.∀a,b,c:word S → Prop.a ∪ b ∪ c = a ∪ (b ∪ c). +#S a b c; napply extP; #w; nnormalize; @; *; /3/; *; /3/; nqed. + +nlemma cupC : ∀S. ∀a,b:word S → Prop.a ∪ b = b ∪ a. +#S a b; napply extP; #w; @; *; nnormalize; /2/; nqed. + +(* theorem 16: 2 *) +nlemma oplus_cup : ∀S:Alpha.∀e1,e2:pre S.𝐋\p (e1 ⊕ e2) = 𝐋\p e1 ∪ 𝐋\p e2. +#S r1; ncases r1; #e1 b1 r2; ncases r2; #e2 b2; +nwhd in ⊢ (??(??%)?); +nchange in ⊢(??%?) with (𝐋\p (e1 + e2) ∪ ϵ (b1 || b2)); +nchange in ⊢(??(??%?)?) with (𝐋\p (e1) ∪ 𝐋\p (e2)); +nrewrite > (epsilon_or S …); nrewrite > (cupA S (𝐋\p e1) …); +nrewrite > (cupC ? (ϵ b1) …); nrewrite < (cupA S (𝐋\p e2) …); +nrewrite > (cupC ? ? (ϵ b1) …); nrewrite < (cupA …); //; +nqed. + +nlemma odotEt : + ∀S.∀e1,e2:pitem S.∀b2. 〈e1,true〉 ⊙ 〈e2,b2〉 = 〈e1 · \fst (•e2),b2 || \snd (•e2)〉. +#S e1 e2 b2; nnormalize; ncases (•e2); //; nqed. + +nlemma LcatE : ∀S.∀e1,e2:pitem S.𝐋\p (e1 · e2) = 𝐋\p e1 · 𝐋 |e2| ∪ 𝐋\p e2. //; nqed. + +nlemma cup_dotD : ∀S.∀p,q,r:word S → Prop.(p ∪ q) · r = (p · r) ∪ (q · r). +#S p q r; napply extP; #w; nnormalize; @; +##[ *; #x; *; #y; *; *; #defw; *; /7/ by or_introl, or_intror, ex_intro, conj; +##| *; *; #x; *; #y; *; *; /7/ by or_introl, or_intror, ex_intro, conj; ##] +nqed. + +nlemma cup0 :∀S.∀p:word S → Prop.p ∪ {} = p. +#S p; napply extP; #w; nnormalize; @; /2/; *; //; *; nqed. + +nlemma erase_dot : ∀S.∀e1,e2:pitem S.𝐋 |e1 · e2| = 𝐋 |e1| · 𝐋 |e2|. +#S e1 e2; napply extP; nnormalize; #w; @; *; #w1; *; #w2; *; *; /7/ by ex_intro, conj; +nqed. + +nlemma erase_plus : ∀S.∀e1,e2:pitem S.𝐋 |e1 + e2| = 𝐋 |e1| ∪ 𝐋 |e2|. +#S e1 e2; napply extP; nnormalize; #w; @; *; /4/ by or_introl, or_intror; nqed. + +nlemma erase_star : ∀S.∀e1:pitem S.𝐋 |e1|^* = 𝐋 |e1^*|. //; nqed. + +ndefinition substract := λS.λp,q:word S → Prop.λw.p w ∧ ¬ q w. +interpretation "substract" 'minus a b = (substract ? a b). + +nlemma cup_sub: ∀S.∀a,b:word S → Prop. ¬ (a []) → a ∪ (b - {[]}) = (a ∪ b) - {[]}. +#S a b c; napply extP; #w; nnormalize; @; *; /4/; *; /4/; nqed. + +nlemma sub0 : ∀S.∀a:word S → Prop. a - {} = a. +#S a; napply extP; #w; nnormalize; @; /3/; *; //; nqed. + +nlemma subK : ∀S.∀a:word S → Prop. a - a = {}. +#S a; napply extP; #w; nnormalize; @; *; /2/; nqed. + +nlemma subW : ∀S.∀a,b:word S → Prop.∀w.(a - b) w → a w. +#S a b w; nnormalize; *; //; nqed. + +nlemma erase_bull : ∀S.∀a:pitem S. |\fst (•a)| = |a|. +#S a; nelim a; // by {}; +##[ #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (|e1| · |e2|); + nrewrite < IH1; nrewrite < IH2; + nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊙ 〈e2,false〉)); + ncases (•e1); #e3 b; ncases b; nnormalize; + ##[ ncases (•e2); //; ##| nrewrite > IH2; //] +##| #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (|e1| + |e2|); + nrewrite < IH2; nrewrite < IH1; + nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊕ •e2)); + ncases (•e1); ncases (•e2); //; +##| #e IH; nchange in ⊢ (???%) with (|e|^* ); nrewrite < IH; + nchange in ⊢ (??(??%)?) with (\fst (•e))^*; //; ##] +nqed. + +nlemma eta_lp : ∀S.∀p:pre S.𝐋\p p = 𝐋\p 〈\fst p, \snd p〉. +#S p; ncases p; //; nqed. + +nlemma epsilon_dot: ∀S.∀p:word S → Prop. {[]} · p = p. +#S e; napply extP; #w; nnormalize; @; ##[##2: #Hw; @[]; @w; /3/; ##] +*; #w1; *; #w2; *; *; #defw defw1 Hw2; nrewrite < defw; nrewrite < defw1; +napply Hw2; nqed. + +(* theorem 16: 1 → 3 *) +nlemma odot_dot_aux : ∀S.∀e1,e2: pre S. + 𝐋\p (•(\fst e2)) = 𝐋\p (\fst e2) ∪ 𝐋 |\fst e2| → + 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 |\fst e2| ∪ 𝐋\p e2. +#S e1 e2 th1; ncases e1; #e1' b1'; ncases b1'; +##[ nwhd in ⊢ (??(??%)?); nletin e2' ≝ (\fst e2); nletin b2' ≝ (\snd e2); + nletin e2'' ≝ (\fst (•(\fst e2))); nletin b2'' ≝ (\snd (•(\fst e2))); + nchange in ⊢ (??%?) with (?∪?); + nchange in ⊢ (??(??%?)?) with (?∪?); + nchange in match (𝐋\p 〈?,?〉) with (?∪?); + nrewrite > (epsilon_or …); nrewrite > (cupC ? (ϵ ?)…); + nrewrite > (cupA …);nrewrite < (cupA ?? (ϵ?)…); + nrewrite > (?: 𝐋\p e2'' ∪ ϵ b2'' = 𝐋\p e2' ∪ 𝐋 |e2'|); ##[##2: + nchange with (𝐋\p 〈e2'',b2''〉 = 𝐋\p e2' ∪ 𝐋 |e2'|); + ngeneralize in match th1; + nrewrite > (eta_lp…); #th1; nrewrite > th1; //;##] + nrewrite > (eta_lp ? e2); + nchange in match (𝐋\p 〈\fst e2,?〉) with (𝐋\p e2'∪ ϵ b2'); + nrewrite > (cup_dotD …); nrewrite > (epsilon_dot…); + nrewrite > (cupC ? (𝐋\p e2')…); nrewrite > (cupA…);nrewrite > (cupA…); + nrewrite < (erase_bull S e2') in ⊢ (???(??%?)); //; +##| ncases e2; #e2' b2'; nchange in match (〈e1',false〉⊙?) with 〈?,?〉; + nchange in match (𝐋\p ?) with (?∪?); + nchange in match (𝐋\p (e1'·?)) with (?∪?); + nchange in match (𝐋\p 〈e1',?〉) with (?∪?); + nrewrite > (cup0…); + nrewrite > (cupA…); //;##] nqed. +nlemma sub_dot_star : + ∀S.∀X:word S → Prop.∀b. (X - ϵ b) · X^* ∪ {[]} = X^*. +#S X b; napply extP; #w; @; +##[ *; ##[##2: nnormalize; #defw; nrewrite < defw; @[]; @; //] + *; #w1; *; #w2; *; *; #defw sube; *; #lw; *; #flx cj; + @ (w1 :: lw); nrewrite < defw; nrewrite < flx; @; //; + @; //; napply (subW … sube); +##| *; #wl; *; #defw Pwl; nrewrite < defw; nelim wl in Pwl; ##[ #_; @2; //] + #w' wl' IH; *; #Pw' IHp; nlapply (IH IHp); *; + ##[ *; #w1; *; #w2; *; *; #defwl' H1 H2; + @; ncases b in H1; #H1; + ##[##2: nrewrite > (sub0…); @w'; @(w1@w2); + nrewrite > (associative_append ? w' w1 w2); + nrewrite > defwl'; @; ##[@;//] @(wl'); @; //; + ##| ncases w' in Pw'; + ##[ #ne; @w1; @w2; nrewrite > defwl'; @; //; @; //; + ##| #x xs Px; @(x::xs); @(w1@w2); + nrewrite > (defwl'); @; ##[@; //; @; //; @; nnormalize; #; ndestruct] + @wl'; @; //; ##] ##] + ##| #wlnil; nchange in match (flatten ? (w'::wl')) with (w' @ flatten ? wl'); + nrewrite < (wlnil); nrewrite > (append_nil…); ncases b; + ##[ ncases w' in Pw'; /2/; #x xs Pxs; @; @(x::xs); @([]); + nrewrite > (append_nil…); @; ##[ @; //;@; //; nnormalize; @; #; ndestruct] + @[]; @; //; + ##| @; @w'; @[]; nrewrite > (append_nil…); @; ##[##2: @[]; @; //] + @; //; @; //; @; *;##]##]##] +nqed. + +(* theorem 16: 1 *) +alias symbol "pc" (instance 13) = "cat lang". +alias symbol "in_pl" (instance 23) = "in_pl". +alias symbol "in_pl" (instance 5) = "in_pl". +alias symbol "eclose" (instance 21) = "eclose". +ntheorem bull_cup : ∀S:Alpha. ∀e:pitem S. 𝐋\p (•e) = 𝐋\p e ∪ 𝐋 |e|. +#S e; nelim e; //; + ##[ #a; napply extP; #w; nnormalize; @; *; /3/ by or_introl, or_intror; + ##| #a; napply extP; #w; nnormalize; @; *; /3/ by or_introl; *; + ##| #e1 e2 IH1 IH2; + nchange in ⊢ (??(??(%))?) with (•e1 ⊙ 〈e2,false〉); + nrewrite > (odot_dot_aux S (•e1) 〈e2,false〉 IH2); + nrewrite > (IH1 …); nrewrite > (cup_dotD …); + nrewrite > (cupA …); nrewrite > (cupC ?? (𝐋\p ?) …); + nchange in match (𝐋\p 〈?,?〉) with (𝐋\p e2 ∪ {}); nrewrite > (cup0 …); + nrewrite < (erase_dot …); nrewrite < (cupA …); //; + ##| #e1 e2 IH1 IH2; + nchange in match (•(?+?)) with (•e1 ⊕ •e2); nrewrite > (oplus_cup …); + nrewrite > (IH1 …); nrewrite > (IH2 …); nrewrite > (cupA …); + nrewrite > (cupC ? (𝐋\p e2)…);nrewrite < (cupA ??? (𝐋\p e2)…); + nrewrite > (cupC ?? (𝐋\p e2)…); nrewrite < (cupA …); + nrewrite < (erase_plus …); //. + ##| #e; nletin e' ≝ (\fst (•e)); nletin b' ≝ (\snd (•e)); #IH; + nchange in match (𝐋\p ?) with (𝐋\p 〈e'^*,true〉); + nchange in match (𝐋\p ?) with (𝐋\p (e'^* ) ∪ {[ ]}); + nchange in ⊢ (??(??%?)?) with (𝐋\p e' · 𝐋 |e'|^* ); + nrewrite > (erase_bull…e); + nrewrite > (erase_star …); + nrewrite > (?: 𝐋\p e' = 𝐋\p e ∪ (𝐋 |e| - ϵ b')); ##[##2: + nchange in IH : (??%?) with (𝐋\p e' ∪ ϵ b'); ncases b' in IH; + ##[ #IH; nrewrite > (cup_sub…); //; nrewrite < IH; + nrewrite < (cup_sub…); //; nrewrite > (subK…); nrewrite > (cup0…);//; + ##| nrewrite > (sub0 …); #IH; nrewrite < IH; nrewrite > (cup0 …);//; ##]##] + nrewrite > (cup_dotD…); nrewrite > (cupA…); + nrewrite > (?: ((?·?)∪{[]} = 𝐋 |e^*|)); //; + nchange in match (𝐋 |e^*|) with ((𝐋 |e|)^* ); napply sub_dot_star;##] + nqed. + +(* theorem 16: 3 *) +nlemma odot_dot: + ∀S.∀e1,e2: pre S. 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 |\fst e2| ∪ 𝐋\p e2. +#S e1 e2; napply odot_dot_aux; napply (bull_cup S (\fst e2)); nqed. + +nlemma dot_star_epsilon : ∀S.∀e:re S.𝐋 e · 𝐋 e^* ∪ {[]} = 𝐋 e^*. +#S e; napply extP; #w; nnormalize; @; +##[ *; ##[##2: #H; nrewrite < H; @[]; /3/] *; #w1; *; #w2; + *; *; #defw Hw1; *; #wl; *; #defw2 Hwl; @(w1 :: wl); + nrewrite < defw; nrewrite < defw2; @; //; @;//; +##| *; #wl; *; #defw Hwl; ncases wl in defw Hwl; ##[#defw; #; @2; nrewrite < defw; //] + #x xs defw; *; #Hx Hxs; @; @x; @(flatten ? xs); nrewrite < defw; + @; /2/; @xs; /2/;##] + nqed. + +nlemma nil_star : ∀S.∀e:re S. [ ] ∈ e^*. +#S e; @[]; /2/; nqed. + +nlemma cupID : ∀S.∀l:word S → Prop.l ∪ l = l. +#S l; napply extP; #w; @; ##[*]//; #; @; //; nqed. + +nlemma cup_star_nil : ∀S.∀l:word S → Prop. l^* ∪ {[]} = l^*. +#S a; napply extP; #w; @; ##[*; //; #H; nrewrite < H; @[]; @; //] #;@; //;nqed. + +nlemma rcanc_sing : ∀S.∀A,C:word S → Prop.∀b:word S . + ¬ (A b) → A ∪ { (b) } = C → A = C - { (b) }. +#S A C b nbA defC; nrewrite < defC; napply extP; #w; @; +##[ #Aw; /3/| *; *; //; #H nH; ncases nH; #abs; nlapply (abs H); *] +nqed. + +(* theorem 16: 4 *) +nlemma star_dot: ∀S.∀e:pre S. 𝐋\p (e^⊛) = 𝐋\p e · (𝐋 |\fst e|)^*. +#S p; ncases p; #e b; ncases b; +##[ nchange in match (〈e,true〉^⊛) with 〈?,?〉; + nletin e' ≝ (\fst (•e)); nletin b' ≝ (\snd (•e)); + nchange in ⊢ (??%?) with (?∪?); + nchange in ⊢ (??(??%?)?) with (𝐋\p e' · 𝐋 |e'|^* ); + nrewrite > (?: 𝐋\p e' = 𝐋\p e ∪ (𝐋 |e| - ϵ b' )); ##[##2: + nlapply (bull_cup ? e); #bc; + nchange in match (𝐋\p (•e)) in bc with (?∪?); + nchange in match b' in bc with b'; + ncases b' in bc; ##[##2: nrewrite > (cup0…); nrewrite > (sub0…); //] + nrewrite > (cup_sub…); ##[napply rcanc_sing] //;##] + nrewrite > (cup_dotD…); nrewrite > (cupA…);nrewrite > (erase_bull…); + nrewrite > (sub_dot_star…); + nchange in match (𝐋\p 〈?,?〉) with (?∪?); + nrewrite > (cup_dotD…); nrewrite > (epsilon_dot…); //; +##| nwhd in match (〈e,false〉^⊛); nchange in match (𝐋\p 〈?,?〉) with (?∪?); + nrewrite > (cup0…); + nchange in ⊢ (??%?) with (𝐋\p e · 𝐋 |e|^* ); + nrewrite < (cup0 ? (𝐋\p e)); //;##] +nqed. + +nlet rec pre_of_re (S : Alpha) (e : re S) on e : pitem S ≝ + match e with + [ z ⇒ pz ? + | e ⇒ pe ? + | s x ⇒ ps ? x + | c e1 e2 ⇒ pc ? (pre_of_re ? e1) (pre_of_re ? e2) + | o e1 e2 ⇒ po ? (pre_of_re ? e1) (pre_of_re ? e2) + | k e1 ⇒ pk ? (pre_of_re ? e1)]. + +nlemma notFalse : ¬False. @; //; nqed. + +nlemma dot0 : ∀S.∀A:word S → Prop. {} · A = {}. +#S A; nnormalize; napply extP; #w; @; ##[##2: *] +*; #w1; *; #w2; *; *; //; nqed. + +nlemma Lp_pre_of_re : ∀S.∀e:re S. 𝐋\p (pre_of_re ? e) = {}. +#S e; nelim e; ##[##1,2,3: //] +##[ #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1 e2))) with (?∪?); + nrewrite > H1; nrewrite > H2; nrewrite > (dot0…); nrewrite > (cupID…);// +##| #e1 e2 H1 H2; nchange in match (𝐋\p (pre_of_re S (e1+e2))) with (?∪?); + nrewrite > H1; nrewrite > H2; nrewrite > (cupID…); // +##| #e1 H1; nchange in match (𝐋\p (pre_of_re S (e1^* ))) with (𝐋\p (pre_of_re ??) · ?); + nrewrite > H1; napply dot0; ##] +nqed. + +nlemma erase_pre_of_reK : ∀S.∀e. 𝐋 |pre_of_re S e| = 𝐋 e. +#S A; nelim A; //; +##[ #e1 e2 H1 H2; nchange in match (𝐋 (e1 · e2)) with (𝐋 e1·?); + nrewrite < H1; nrewrite < H2; // +##| #e1 e2 H1 H2; nchange in match (𝐋 (e1 + e2)) with (𝐋 e1 ∪ ?); + nrewrite < H1; nrewrite < H2; // +##| #e1 H1; nchange in match (𝐋 (e1^* )) with ((𝐋 e1)^* ); + nrewrite < H1; //] +nqed. + +(* corollary 17 *) +nlemma L_Lp_bull : ∀S.∀e:re S.𝐋 e = 𝐋\p (•pre_of_re ? e). +#S e; nrewrite > (bull_cup…); nrewrite > (Lp_pre_of_re…); +nrewrite > (cupC…); nrewrite > (cup0…); nrewrite > (erase_pre_of_reK…); //; +nqed. + +nlemma Pext : ∀S.∀f,g:word S → Prop. f = g → ∀w.f w → g w. +#S f g H; nrewrite > H; //; nqed. + +(* corollary 18 *) +ntheorem bull_true_epsilon : ∀S.∀e:pitem S. \snd (•e) = true ↔ [ ] ∈ |e|. +#S e; @; +##[ #defsnde; nlapply (bull_cup ? e); nchange in match (𝐋\p (•e)) with (?∪?); + nrewrite > defsnde; #H; + nlapply (Pext ??? H [ ] ?); ##[ @2; //] *; //; + +STOP + notation > "\move term 90 x term 90 E" non associative with precedence 60 for @{move ? $x $E}. nlet rec move (S: Alpha) (x:S) (E: pitem S) on E : pre S ≝ @@ -265,7 +542,7 @@ interpretation "move" 'move x E = (move ? x E). ndefinition rmove ≝ λS:Alpha.λx:S.λe:pre S. \move x (\fst e). interpretation "rmove" 'move x E = (rmove ? x E). -nlemma XXz : ∀S:Alpha.∀w:word S. w .∈ ∅ → False. +nlemma XXz : ∀S:Alpha.∀w:word S. w ∈ ∅ → False. #S w abs; ninversion abs; #; ndestruct; nqed. @@ -278,9 +555,6 @@ nlemma XXze : ∀S:Alpha.∀w:word S. w .∈ (∅ · ϵ) → False. #S w abs; ninversion abs; #; ndestruct; /2/ by XXz,XXe; nqed. -nlemma eqb_t : ∀S:Alpha.∀a,b:S.∀p:a == b = true. a = b. -#S a b H; nrewrite < (eqb_true ? a b); //. -nqed. naxiom in_move_cat: ∀S.∀w:word S.∀x.∀E1,E2:pitem S. w .∈ \move x (E1 · E2) →