X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsetoids.ma;h=dac7b1375ac3f93fcafcfea033b5d39db1a69170;hb=e1cbf489bba32a8109f3373f43f9e3cfe2e0171f;hp=40982a660438b3479e40d5502aba581041d2ec47;hpb=70893c71a58e7788b9ec2256dd96f3d75818b61a;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/setoids.ma b/helm/software/matita/nlibrary/sets/setoids.ma index 40982a660..dac7b1375 100644 --- a/helm/software/matita/nlibrary/sets/setoids.ma +++ b/helm/software/matita/nlibrary/sets/setoids.ma @@ -14,64 +14,95 @@ include "logic/connectives.ma". include "properties/relations.ma". +include "hints_declaration.ma". + +(* +notation "hvbox(a break = \sub \ID b)" non associative with precedence 45 +for @{ 'eqID $a $b }. + +notation > "hvbox(a break =_\ID b)" non associative with precedence 45 +for @{ cic:/matita/logic/equality/eq.ind#xpointer(1/1) ? $a $b }. + +interpretation "ID eq" 'eqID x y = (cic:/matita/logic/equality/eq.ind#xpointer(1/1) ? x y). +*) nrecord setoid : Type[1] ≝ - { carr:> Type; - eq: carr → carr → CProp; - refl: reflexive … eq; - sym: symmetric … eq; - trans: transitive … eq + { carr:> Type[0]; + eq: equivalence_relation carr }. -ndefinition proofs: CProp → setoid. -#P; napply (mk_setoid …); -##[ napply P; -##| #x; #y; napply True; -##|##*: nwhd; nrepeat (#_); napply I; -##] -nqed. +interpretation "setoid eq" 'eq t x y = (eq_rel ? (eq t) x y). + +notation > "hvbox(a break =_0 b)" non associative with precedence 45 +for @{ eq_rel ? (eq ?) $a $b }. -nrecord function_space (A,B: setoid): Type ≝ - { f:1> A → B; - f_ok: ∀a,a':A. proofs (eq … a a') → proofs (eq … (f a) (f a')) +interpretation "setoid symmetry" 'invert r = (sym ???? r). +notation ".= r" with precedence 50 for @{'trans $r}. +interpretation "trans" 'trans r = (trans ????? r). + +nrecord unary_morphism (A,B: setoid) : Type[0] ≝ + { fun1:1> A → B; + prop1: ∀a,a'. eq ? a a' → eq ? (fun1 a) (fun1 a') }. -notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }. - -ndefinition function_space_setoid: setoid → setoid → setoid. - #A; #B; napply (mk_setoid …); -##[ napply (function_space A B); -##| #f; #f1; napply (∀a:A. proofs (eq … (f a) (f1 a))); -##| nwhd; #x; #a; - napply (f_ok … x …); (* QUI!! *) -(* unfold carr; unfold proofs; simplify; - apply (refl A) - | simplify; - intros; - unfold carr; unfold proofs; simplify; - apply (sym B); - apply (f a) - | simplify; - intros; - unfold carr; unfold proofs; simplify; - apply (trans B ? (y a)); - [ apply (f a) - | apply (f1 a)]] -qed. - -nrecord isomorphism (A,B: setoid): Type ≝ - { map1:> function_space_setoid A B; - map2:> function_space_setoid B A; - inv1: ∀a:A. proofs (eq ? (map2 (map1 a)) a); - inv2: ∀b:B. proofs (eq ? (map1 (map2 b)) b) +nrecord binary_morphism (A,B,C:setoid) : Type[0] ≝ + { fun2:2> A → B → C; + prop2: ∀a,a',b,b'. eq ? a a' → eq ? b b' → eq ? (fun2 a b) (fun2 a' b') }. -interpretation "isomorphism" 'iff x y = (isomorphism x y). +notation "† c" with precedence 90 for @{'prop1 $c }. +notation "l ‡ r" with precedence 90 for @{'prop2 $l $r }. +notation "#" with precedence 90 for @{'refl}. +interpretation "prop1" 'prop1 c = (prop1 ????? c). +interpretation "prop2" 'prop2 l r = (prop2 ???????? l r). +interpretation "refl" 'refl = (refl ???). + +ndefinition binary_morph_setoid : setoid → setoid → setoid → setoid. +#S1; #S2; #T; @ (binary_morphism S1 S2 T); @; +##[ #f; #g; napply (∀x,y. f x y = g x y); +##| #f; #x; #y; napply #; +##| #f; #g; #H; #x; #y; napply ((H x y)^-1); +##| #f; #g; #h; #H1; #H2; #x; #y; napply (trans … (H1 …) (H2 …)); ##] +nqed. + +ndefinition unary_morph_setoid : setoid → setoid → setoid. +#S1; #S2; @ (unary_morphism S1 S2); @; +##[ #f; #g; napply (∀x. f x = g x); +##| #f; #x; napply #; +##| #f; #g; #H; #x; napply ((H x)^-1); +##| #f; #g; #h; #H1; #H2; #x; napply (trans … (H1 …) (H2 …)); ##] +nqed. (* -record dependent_product (A:setoid) (B: A ⇒ setoids): Type ≝ - { dp:> ∀a:A.carr (B a); - dp_ok: ∀a,a':A. ∀p:proofs1 (eq1 ? a a'). proofs1 (eq1 ? (dp a) (map2 ?? (f1_ok ?? B ?? p) (dp a'))) - }.*) +unification hint 0 + (∀o1,o2. (λx,y:Type[0].True) (carr (unary_morph_setoid o1 o2)) (unary_morphism o1 o2)). +*) + +ndefinition composition ≝ + λo1,o2,o3:Type[0].λf:o2 → o3.λg: o1 → o2.λx.f (g x). - *) \ No newline at end of file +interpretation "function composition" 'compose f g = (composition ??? f g). + +ndefinition comp_unary_morphisms: + ∀o1,o2,o3:setoid. + unary_morphism o2 o3 → unary_morphism o1 o2 → + unary_morphism o1 o3. +#o1; #o2; #o3; #f; #g; @ (f ∘ g); + #a; #a'; #e; nnormalize; napply (.= †(†e)); napply #. +nqed. + +unification hint 0 ≔ o1,o2,o3:setoid,f:unary_morphism o2 o3,g:unary_morphism o1 o2; + R ≟ (mk_unary_morphism ?? (composition … f g) + (prop1 ?? (comp_unary_morphisms o1 o2 o3 f g))) + (* -------------------------------------------------------------------- *) ⊢ + fun1 ?? R ≡ (composition … f g). + +ndefinition comp_binary_morphisms: + ∀o1,o2,o3. + binary_morphism (unary_morph_setoid o2 o3) (unary_morph_setoid o1 o2) + (unary_morph_setoid o1 o3). +#o1; #o2; #o3; @ + [ #f; #g; napply (comp_unary_morphisms … f g) (*CSC: why not ∘?*) + | #a; #a'; #b; #b'; #ea; #eb; #x; nnormalize; + napply (.= †(eb x)); napply ea. +nqed.