X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsets.ma;h=113654ad330de847908ae68b3fcf65faaf9c3033;hb=a90c31c1b53222bd6d57360c5ba5c2d0fe7d5207;hp=c8f303a6b407920f101126160a4b6d6333d9acfc;hpb=4377e950998c9c63937582952a79975947aa9a45;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index c8f303a6b..113654ad3 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -34,10 +34,6 @@ interpretation "intersect" 'intersects U V = (intersect ? U V). ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }. interpretation "union" 'union U V = (union ? U V). -ndefinition substract ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ ¬ x ∈ V }. -interpretation "substract" 'minus U V = (substract ? U V). - - ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }. ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }. @@ -45,51 +41,53 @@ ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ ndefinition full_set: ∀A. Ω^A ≝ λA.{ x | True }. nlemma subseteq_refl: ∀A.∀S: Ω^A. S ⊆ S. -//.nqed. + #A; #S; #x; #H; nassumption. +nqed. nlemma subseteq_trans: ∀A.∀S,T,U: Ω^A. S ⊆ T → T ⊆ U → S ⊆ U. -/3/.nqed. + #A; #S; #T; #U; #H1; #H2; #x; #P; napply H2; napply H1; nassumption. +nqed. include "properties/relations1.ma". ndefinition seteq: ∀A. equivalence_relation1 (Ω^A). -#A; @(λS,S'. S ⊆ S' ∧ S' ⊆ S); /2/; ##[ #A B; *; /3/] -#S T U; *; #H1 H2; *; /4/; + #A; @ + [ napply (λS,S'. S ⊆ S' ∧ S' ⊆ S) + | #S; @; napply subseteq_refl + | #S; #S'; *; #H1; #H2; @; nassumption + | #S; #T; #U; *; #H1; #H2; *; #H3; #H4; @; napply subseteq_trans; + ##[##2,5: nassumption |##1,4: ##skip |##*: nassumption]##] nqed. include "sets/setoids1.ma". -ndefinition singleton ≝ λA:setoid.λa:A.{ x | a = x }. -interpretation "singl" 'singl a = (singleton ? a). - (* this has to be declared here, so that it is combined with carr *) ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?). ndefinition powerclass_setoid: Type[0] → setoid1. - #A; @(Ω^A);//. + #A; @[ napply (Ω^A)| napply seteq ] nqed. +include "hints_declaration.ma". + alias symbol "hint_decl" = "hint_decl_Type2". -unification hint 0 ≔ A; - R ≟ (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) -(*--------------------------------------------------*)⊢ - carr1 R ≡ Ω^A. +unification hint 0 ≔ A ⊢ carr1 (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) ≡ Ω^A. (************ SETS OVER SETOIDS ********************) include "logic/cprop.ma". -nrecord ext_powerclass (A: setoid) : Type[1] ≝ { - ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso... - forse lo si vorrebbe dichiarato con un target più lasco - ma la sintassi :> non lo supporta *) +nrecord ext_powerclass (A: setoid) : Type[1] ≝ + { ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso... + forse lo si vorrebbe dichiarato con un target più lasco + ma la sintassi :> non lo supporta *) ext_prop: ∀x,x':A. x=x' → (x ∈ ext_carr) = (x' ∈ ext_carr) -}. + }. notation > "𝛀 ^ term 90 A" non associative with precedence 70 for @{ 'ext_powerclass $A }. -notation < "Ω term 90 A \atop ≈" non associative with precedence 90 +notation "Ω term 90 A \atop ≈" non associative with precedence 70 for @{ 'ext_powerclass $A }. interpretation "extensional powerclass" 'ext_powerclass a = (ext_powerclass a). @@ -100,11 +98,17 @@ nqed. ncoercion Full_set: ∀A. ext_powerclass A ≝ Full_set on A: setoid to ext_powerclass ?. ndefinition ext_seteq: ∀A. equivalence_relation1 (𝛀^A). - #A; @ [ napply (λS,S'. S = S') ] /2/. + #A; @ + [ napply (λS,S'. S = S') + | #S; napply (refl1 ? (seteq A)) + | #S; #S'; napply (sym1 ? (seteq A)) + | #S; #T; #U; napply (trans1 ? (seteq A))] nqed. ndefinition ext_powerclass_setoid: setoid → setoid1. - #A; @ (ext_seteq A). + #A; @ + [ napply (ext_powerclass A) + | napply (ext_seteq A) ] nqed. unification hint 0 ≔ A; @@ -112,242 +116,106 @@ unification hint 0 ≔ A; (* ----------------------------------------------------- *) ⊢ carr1 R ≡ ext_powerclass A. +interpretation "prop21 mem" 'prop2 l r = (prop21 (setoid1_of_setoid ?) (ext_powerclass_setoid ?) ? ? ???? l r). + +(* +ncoercion ext_carr' : ∀A.∀x:ext_powerclass_setoid A. Ω^A ≝ ext_carr +on _x : (carr1 (ext_powerclass_setoid ?)) to (Ω^?). +*) + nlemma mem_ext_powerclass_setoid_is_morph: - ∀A. (setoid1_of_setoid A) ⇒_1 ((𝛀^A) ⇒_1 CPROP). -#A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S)); -#a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H -[ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/. + ∀A. binary_morphism1 (setoid1_of_setoid A) (ext_powerclass_setoid A) CPROP. + #A; @ + [ napply (λx,S. x ∈ S) + | #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H; + ##[ napply Hb1; napply (. (ext_prop … Ha^-1)); nassumption; + ##| napply Hb2; napply (. (ext_prop … Ha)); nassumption; + ##] + ##] nqed. -unification hint 0 ≔ AA : setoid, S : 𝛀^AA, x : carr AA; - A ≟ carr AA, +unification hint 0 ≔ A:setoid, x, S; SS ≟ (ext_carr ? S), - TT ≟ (mk_unary_morphism1 ?? - (λx:carr1 (setoid1_of_setoid ?). - mk_unary_morphism1 ?? - (λS:carr1 (ext_powerclass_setoid ?). x ∈ (ext_carr ? S)) - (prop11 ?? (fun11 ?? (mem_ext_powerclass_setoid_is_morph AA) x))) - (prop11 ?? (mem_ext_powerclass_setoid_is_morph AA))), - T2 ≟ (ext_powerclass_setoid AA) -(*---------------------------------------------------------------------------*) ⊢ - fun11 T2 CPROP (fun11 (setoid1_of_setoid AA) (unary_morphism1_setoid1 T2 CPROP) TT x) S ≡ mem A SS x. - -nlemma set_ext : ∀S.∀A,B:Ω^S.A =_1 B → ∀x:S.(x ∈ A) =_1 (x ∈ B). -#S A B; *; #H1 H2 x; @; ##[ napply H1 | napply H2] nqed. - -nlemma ext_set : ∀S.∀A,B:Ω^S.(∀x:S. (x ∈ A) = (x ∈ B)) → A = B. -#S A B H; @; #x; ncases (H x); #H1 H2; ##[ napply H1 | napply H2] nqed. - -nlemma subseteq_is_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 CPROP. - #A; napply (mk_binary_morphism1 … (λS,S':𝛀^A. S ⊆ S')); - #a; #a'; #b; #b'; *; #H1; #H2; *; /5/ by mk_iff, sym1, subseteq_trans; + TT ≟ (mk_binary_morphism1 ??? + (λx:setoid1_of_setoid ?.λS:ext_powerclass_setoid ?. x ∈ S) + (prop21 ??? (mem_ext_powerclass_setoid_is_morph A))), + XX ≟ (ext_powerclass_setoid A) + (*-------------------------------------*) ⊢ + fun21 (setoid1_of_setoid A) XX CPROP TT x S + ≡ mem A SS x. + +nlemma subseteq_is_morph: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) CPROP. + #A; @ + [ napply (λS,S'. S ⊆ S') + | #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #H + [ napply (subseteq_trans … a) + [ nassumption | napply (subseteq_trans … b); nassumption ] + ##| napply (subseteq_trans … a') + [ nassumption | napply (subseteq_trans … b'); nassumption ] ##] nqed. -(* hints for ∩ *) +unification hint 0 ≔ A,a,a' + (*-----------------------------------------------------------------*) ⊢ + eq_rel ? (eq A) a a' ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) a a'. + nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. -#S A B; @ (A ∩ B); #x y Exy; @; *; #H1 H2; @; -##[##1,2: napply (. Exy^-1╪_1#); nassumption; -##|##3,4: napply (. Exy‡#); nassumption] + #A; #S; #S'; @ (S ∩ S'); + #a; #a'; #Ha; @; *; #H1; #H2; @ + [##1,2: napply (. Ha^-1‡#); nassumption; +##|##3,4: napply (. Ha‡#); nassumption] nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ A : setoid, B,C : 𝛀^A; - AA ≟ carr A, - BB ≟ ext_carr ? B, - CC ≟ ext_carr ? C, - R ≟ (mk_ext_powerclass ? - (ext_carr ? B ∩ ext_carr ? C) - (ext_prop ? (intersect_is_ext ? B C))) +unification hint 0 ≔ + A : setoid, B,C : ext_powerclass A; + R ≟ (mk_ext_powerclass ? (B ∩ C) (ext_prop ? (intersect_is_ext ? B C))) + (* ------------------------------------------*) ⊢ - ext_carr A R ≡ intersect AA BB CC. - -nlemma intersect_is_morph: ∀A. Ω^A ⇒_1 Ω^A ⇒_1 Ω^A. -#A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S')); -#a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/. + ext_carr A R ≡ intersect ? (ext_carr ? B) (ext_carr ? C). + +nlemma intersect_is_morph: + ∀A. binary_morphism1 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A). + #A; @ (λS,S'. S ∩ S'); + #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *; #Ka; #Kb; @ + [ napply Ha1; nassumption + | napply Hb1; nassumption + | napply Ha2; nassumption + | napply Hb2; nassumption] nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ A : Type[0], B,C : Ω^A; - T ≟ powerclass_setoid A, - R ≟ mk_unary_morphism1 ?? - (λX. mk_unary_morphism1 ?? - (λY.X ∩ Y) (prop11 ?? (fun11 ?? (intersect_is_morph A) X))) - (prop11 ?? (intersect_is_morph A)) -(*------------------------------------------------------------------------*) ⊢ - fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C ≡ intersect A B C. - -interpretation "prop21 ext" 'prop2 l r = - (prop11 (ext_powerclass_setoid ?) - (unary_morphism1_setoid1 (ext_powerclass_setoid ?) ?) ? ?? l ?? r). - -nlemma intersect_is_ext_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. - #A; napply (mk_binary_morphism1 … (intersect_is_ext …)); - #a; #a'; #b; #b'; #Ha; #Hb; napply (prop11 … (intersect_is_morph A)); nassumption. +unification hint 0 ≔ + A : Type[0], B,C : Ω^A; + R ≟ (mk_binary_morphism1 … + (λS,S'.S ∩ S') + (prop21 … (intersect_is_morph A))) + ⊢ + fun21 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A) R B C + ≡ intersect ? B C. + +interpretation "prop21 ext" 'prop2 l r = (prop21 (ext_powerclass_setoid ?) (ext_powerclass_setoid ?) ? ? ???? l r). + +nlemma intersect_is_ext_morph: + ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A). + #A; @ (intersect_is_ext …); nlapply (prop21 … (intersect_is_morph A)); +#H; #a; #a'; #b; #b'; #H1; #H2; napply H; nassumption; nqed. unification hint 1 ≔ - AA : setoid, B,C : 𝛀^AA; - A ≟ carr AA, - T ≟ ext_powerclass_setoid AA, - R ≟ (mk_unary_morphism1 ?? (λX:𝛀^AA. - mk_unary_morphism1 ?? (λY:𝛀^AA. - mk_ext_powerclass AA - (ext_carr ? X ∩ ext_carr ? Y) - (ext_prop AA (intersect_is_ext ? X Y))) - (prop11 ?? (fun11 ?? (intersect_is_ext_morph AA) X))) - (prop11 ?? (intersect_is_ext_morph AA))) , + A:setoid, B,C : 𝛀^A; + R ≟ (mk_binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A) + (λS,S':carr1 (ext_powerclass_setoid A). + mk_ext_powerclass A (S∩S') (ext_prop A (intersect_is_ext ? S S'))) + (prop21 … (intersect_is_ext_morph A))) , BB ≟ (ext_carr ? B), CC ≟ (ext_carr ? C) - (* ---------------------------------------------------------------------------------------*) ⊢ - ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ intersect A BB CC. - - -(* hints for ∪ *) -nlemma union_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). -#X; napply (mk_binary_morphism1 … (λA,B.A ∪ B)); -#A1 A2 B1 B2 EA EB; napply ext_set; #x; -nchange in match (x ∈ (A1 ∪ B1)) with (?∨?); -napply (.= (set_ext ??? EA x)‡#); -napply (.= #‡(set_ext ??? EB x)); //; -nqed. - -nlemma union_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. - #S A B; @ (A ∪ B); #x y Exy; @; *; #H1; -##[##1,3: @; ##|##*: @2 ] -##[##1,3: napply (. (Exy^-1)╪_1#) -##|##2,4: napply (. Exy╪_1#)] -nassumption; -nqed. - -alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ A : setoid, B,C : 𝛀^A; - AA ≟ carr A, - BB ≟ ext_carr ? B, - CC ≟ ext_carr ? C, - R ≟ mk_ext_powerclass ? - (ext_carr ? B ∪ ext_carr ? C) (ext_prop ? (union_is_ext ? B C)) -(*-------------------------------------------------------------------------*) ⊢ - ext_carr A R ≡ union AA BB CC. - -unification hint 0 ≔ S:Type[0], A,B:Ω^S; - T ≟ powerclass_setoid S, - MM ≟ mk_unary_morphism1 ?? - (λA.mk_unary_morphism1 ?? - (λB.A ∪ B) (prop11 ?? (fun11 ?? (union_is_morph S) A))) - (prop11 ?? (union_is_morph S)) -(*--------------------------------------------------------------------------*) ⊢ - fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A ∪ B. - -nlemma union_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. -#A; napply (mk_binary_morphism1 … (union_is_ext …)); -#x1 x2 y1 y2 Ex Ey; napply (prop11 … (union_is_morph A)); nassumption. -nqed. - -unification hint 1 ≔ - AA : setoid, B,C : 𝛀^AA; - A ≟ carr AA, - T ≟ ext_powerclass_setoid AA, - R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA. - mk_unary_morphism1 ?? (λY:𝛀^AA. - mk_ext_powerclass AA - (ext_carr ? X ∪ ext_carr ? Y) (ext_prop AA (union_is_ext ? X Y))) - (prop11 ?? (fun11 ?? (union_is_ext_morph AA) X))) - (prop11 ?? (union_is_ext_morph AA)), - BB ≟ (ext_carr ? B), - CC ≟ (ext_carr ? C) -(*------------------------------------------------------*) ⊢ - ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ union A BB CC. - - -(* hints for - *) -nlemma substract_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). -#X; napply (mk_binary_morphism1 … (λA,B.A - B)); -#A1 A2 B1 B2 EA EB; napply ext_set; #x; -nchange in match (x ∈ (A1 - B1)) with (?∧?); -napply (.= (set_ext ??? EA x)‡#); @; *; #H H1; @; //; #H2; napply H1; -##[ napply (. (set_ext ??? EB x)); ##| napply (. (set_ext ??? EB^-1 x)); ##] //; -nqed. - -nlemma substract_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. - #S A B; @ (A - B); #x y Exy; @; *; #H1 H2; @; ##[##2,4: #H3; napply H2] -##[##1,4: napply (. Exy╪_1#); // ##|##2,3: napply (. Exy^-1╪_1#); //] -nqed. - -alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ A : setoid, B,C : 𝛀^A; - AA ≟ carr A, - BB ≟ ext_carr ? B, - CC ≟ ext_carr ? C, - R ≟ mk_ext_powerclass ? - (ext_carr ? B - ext_carr ? C) - (ext_prop ? (substract_is_ext ? B C)) -(*---------------------------------------------------*) ⊢ - ext_carr A R ≡ substract AA BB CC. - -unification hint 0 ≔ S:Type[0], A,B:Ω^S; - T ≟ powerclass_setoid S, - MM ≟ mk_unary_morphism1 ?? - (λA.mk_unary_morphism1 ?? - (λB.A - B) (prop11 ?? (fun11 ?? (substract_is_morph S) A))) - (prop11 ?? (substract_is_morph S)) -(*--------------------------------------------------------------------------*) ⊢ - fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A - B. - -nlemma substract_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. -#A; napply (mk_binary_morphism1 … (substract_is_ext …)); -#x1 x2 y1 y2 Ex Ey; napply (prop11 … (substract_is_morph A)); nassumption. -nqed. - -unification hint 1 ≔ - AA : setoid, B,C : 𝛀^AA; - A ≟ carr AA, - T ≟ ext_powerclass_setoid AA, - R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA. - mk_unary_morphism1 ?? (λY:𝛀^AA. - mk_ext_powerclass AA - (ext_carr ? X - ext_carr ? Y) - (ext_prop AA (substract_is_ext ? X Y))) - (prop11 ?? (fun11 ?? (substract_is_ext_morph AA) X))) - (prop11 ?? (substract_is_ext_morph AA)), - BB ≟ (ext_carr ? B), - CC ≟ (ext_carr ? C) -(*------------------------------------------------------*) ⊢ - ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ substract A BB CC. - -(* hints for {x} *) -nlemma single_is_morph : ∀A:setoid. (setoid1_of_setoid A) ⇒_1 Ω^A. -#X; @; ##[ napply (λx.{(x)}); ##] -#a b E; napply ext_set; #x; @; #H; /3/; nqed. - -nlemma single_is_ext: ∀A:setoid. A → 𝛀^A. -#X a; @; ##[ napply ({(a)}); ##] #x y E; @; #H; /3/; nqed. - -alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ A : setoid, a : carr A; - R ≟ (mk_ext_powerclass ? {(a)} (ext_prop ? (single_is_ext ? a))) -(*-------------------------------------------------------------------------*) ⊢ - ext_carr A R ≡ singleton A a. - -unification hint 0 ≔ A:setoid, a : carr A; - T ≟ setoid1_of_setoid A, - AA ≟ carr A, - MM ≟ mk_unary_morphism1 ?? - (λa:carr1 (setoid1_of_setoid A).{(a)}) (prop11 ?? (single_is_morph A)) -(*--------------------------------------------------------------------------*) ⊢ - fun11 T (powerclass_setoid AA) MM a ≡ {(a)}. - -nlemma single_is_ext_morph:∀A:setoid.(setoid1_of_setoid A) ⇒_1 𝛀^A. -#A; @; ##[ #a; napply (single_is_ext ? a); ##] #a b E; @; #x; /3/; nqed. - -unification hint 1 ≔ AA : setoid, a: carr AA; - T ≟ ext_powerclass_setoid AA, - R ≟ mk_unary_morphism1 ?? - (λa:carr1 (setoid1_of_setoid AA). - mk_ext_powerclass AA {(a)} (ext_prop ? (single_is_ext AA a))) - (prop11 ?? (single_is_ext_morph AA)) -(*------------------------------------------------------*) ⊢ - ext_carr AA (fun11 (setoid1_of_setoid AA) T R a) ≡ singleton AA a. - + (* ------------------------------------------------------*) ⊢ + ext_carr A + (fun21 + (ext_powerclass_setoid A) + (ext_powerclass_setoid A) + (ext_powerclass_setoid A) R B C) ≡ + intersect (carr A) BB CC. (* alias symbol "hint_decl" = "hint_decl_Type2". @@ -409,7 +277,7 @@ nqed. ndefinition image: ∀A,B. (carr A → carr B) → Ω^A → Ω^B ≝ λA,B:setoid.λf:carr A → carr B.λSa:Ω^A. - {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq0 B) (f x) y}. + {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq B) (f x) y}. ndefinition counter_image: ∀A,B. (carr A → carr B) → Ω^B → Ω^A ≝ λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}. @@ -428,55 +296,73 @@ nqed. (******************* first omomorphism theorem for sets **********************) ndefinition eqrel_of_morphism: - ∀A,B. A ⇒_0 B → compatible_equivalence_relation A. + ∀A,B. unary_morphism A B → compatible_equivalence_relation A. #A; #B; #f; @ - [ @ [ napply (λx,y. f x = f y) ] /2/; + [ @ + [ napply (λx,y. f x = f y) + | #x; napply refl | #x; #y; napply sym | #x; #y; #z; napply trans] ##| #x; #x'; #H; nwhd; alias symbol "prop1" = "prop1". -napply (.= (†H)); // ] +napply (.= (†H)); napply refl ] nqed. -ndefinition canonical_proj: ∀A,R. A ⇒_0 (quotient A R). +ndefinition canonical_proj: ∀A,R. unary_morphism A (quotient A R). #A; #R; @ - [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ] + [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ] nqed. ndefinition quotiented_mor: - ∀A,B.∀f:A ⇒_0 B.(quotient … (eqrel_of_morphism … f)) ⇒_0 B. - #A; #B; #f; @ [ napply f ] //. + ∀A,B.∀f:unary_morphism A B. + unary_morphism (quotient … (eqrel_of_morphism … f)) B. + #A; #B; #f; @ + [ napply f | #a; #a'; #H; nassumption] nqed. nlemma first_omomorphism_theorem_functions1: ∀A,B.∀f: unary_morphism A B. ∀x. f x = quotiented_mor … (canonical_proj … (eqrel_of_morphism … f) x). -//. nqed. + #A; #B; #f; #x; napply refl; +nqed. alias symbol "eq" = "setoid eq". ndefinition surjective ≝ - λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:A ⇒_0 B. + λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:unary_morphism A B. ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y. ndefinition injective ≝ - λA,B.λS: ext_powerclass A.λf:A ⇒_0 B. + λA,B.λS: ext_powerclass A.λf:unary_morphism A B. ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'. nlemma first_omomorphism_theorem_functions2: - ∀A,B.∀f:A ⇒_0 B. + ∀A,B.∀f: unary_morphism A B. surjective … (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism … f)). -/3/. nqed. + #A; #B; #f; nwhd; #y; #Hy; @ y; @ I ; napply refl; + (* bug, prova @ I refl *) +nqed. nlemma first_omomorphism_theorem_functions3: - ∀A,B.∀f:A ⇒_0 B. + ∀A,B.∀f: unary_morphism A B. injective … (Full_set ?) (quotiented_mor … f). #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption. nqed. nrecord isomorphism (A, B : setoid) (S: ext_powerclass A) (T: ext_powerclass B) : Type[0] ≝ - { iso_f:> A ⇒_0 B; + { iso_f:> unary_morphism A B; f_closed: ∀x. x ∈ S → iso_f x ∈ T; f_sur: surjective … S T iso_f; f_inj: injective … S iso_f }. +nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W. +#A; #U; #V; #W; *; #H; #x; *; #xU; #xV; napply H; nassumption; +nqed. + +nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W. +#A; #U; #V; #W; #H; #H1; #x; *; #Hx; ##[ napply H; ##| napply H1; ##] nassumption; +nqed. + +nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V. +#A; #U; #V; #W; #H1; #H2; #x; #Hx; @; ##[ napply H1; ##| napply H2; ##] nassumption; +nqed. (* nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝ @@ -499,35 +385,3 @@ ncheck (λA:?. ; }. *) - -(* Set theory *) - -nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W. -#A; #U; #V; #W; *; #H; #x; *; /2/. -nqed. - -nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W. -#A; #U; #V; #W; #H; #H1; #x; *; /2/. -nqed. - -nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V. -/3/. nqed. - -nlemma cupC : ∀S. ∀a,b:Ω^S.a ∪ b = b ∪ a. -#S a b; @; #w; *; nnormalize; /2/; nqed. - -nlemma cupID : ∀S. ∀a:Ω^S.a ∪ a = a. -#S a; @; #w; ##[*; //] /2/; nqed. - -(* XXX Bug notazione \cup, niente parentesi *) -nlemma cupA : ∀S.∀a,b,c:Ω^S.a ∪ b ∪ c = a ∪ (b ∪ c). -#S a b c; @; #w; *; /3/; *; /3/; nqed. - -ndefinition Empty_set : ∀A.Ω^A ≝ λA.{ x | False }. - -notation "∅" non associative with precedence 90 for @{ 'empty }. -interpretation "empty set" 'empty = (Empty_set ?). - -nlemma cup0 :∀S.∀A:Ω^S.A ∪ ∅ = A. -#S p; @; #w; ##[*; //| #; @1; //] *; nqed. -