X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsets.ma;h=3e63bf8f2574fee8eba104a243c6176e83832e39;hb=2dc6ec0db2156431948014a6498c9901f8759e39;hp=a12f1fc5c52dbc0a89b2ae6096b3e674080f79f9;hpb=9a7ec6adbfd12e5305800a033d1b471afe316abd;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index a12f1fc5c..3e63bf8f2 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -12,43 +12,220 @@ (* *) (**************************************************************************) -include "logic/equality.ma". +(******************* SETS OVER TYPES *****************) -nrecord powerset (A: Type) : Type[1] ≝ { mem: A → CProp }. -(* This is a projection! *) -ndefinition mem ≝ λA.λr:powerset A.match r with [mk_powerset f ⇒ f]. +include "logic/connectives.ma". -interpretation "powerset" 'powerset A = (powerset A). - -interpretation "subset construction" 'subset \eta.x = (mk_powerset ? x). +nrecord powerclass (A: Type[0]) : Type[1] ≝ { mem: A → CProp[0] }. interpretation "mem" 'mem a S = (mem ? S a). +interpretation "powerclass" 'powerset A = (powerclass A). +interpretation "subset construction" 'subset \eta.x = (mk_powerclass ? x). ndefinition subseteq ≝ λA.λU,V.∀a:A. a ∈ U → a ∈ V. - interpretation "subseteq" 'subseteq U V = (subseteq ? U V). -ntheorem subseteq_refl: ∀A.∀S:Ω \sup A.S ⊆ S. - #A; #S; #x; #H; nassumption; +ndefinition overlaps ≝ λA.λU,V.∃x:A.x ∈ U ∧ x ∈ V. +interpretation "overlaps" 'overlaps U V = (overlaps ? U V). + +ndefinition intersect ≝ λA.λU,V:Ω \sup A.{ x | x ∈ U ∧ x ∈ V }. +interpretation "intersect" 'intersects U V = (intersect ? U V). + +ndefinition union ≝ λA.λU,V:Ω \sup A.{ x | x ∈ U ∨ x ∈ V }. +interpretation "union" 'union U V = (union ? U V). + +ndefinition big_union ≝ λA,B.λT:Ω \sup A.λf:A → Ω \sup B.{ x | ∃i. i ∈ T ∧ x ∈ f i }. + +ndefinition big_intersection ≝ λA,B.λT:Ω \sup A.λf:A → Ω \sup B.{ x | ∀i. i ∈ T → x ∈ f i }. + +ndefinition full_set: ∀A. Ω \sup A ≝ λA.{ x | True }. +(* bug dichiarazione coercion qui *) +(* ncoercion full_set : ∀A:Type[0]. Ω \sup A ≝ full_set on _A: Type[0] to (Ω \sup ?). *) + +nlemma subseteq_refl: ∀A.∀S: Ω \sup A. S ⊆ S. + #A; #S; #x; #H; nassumption. nqed. -ntheorem subseteq_trans: ∀A.∀S1,S2,S3: Ω \sup A. S1 ⊆ S2 → S2 ⊆ S3 → S1 ⊆ S3. - #A; #S1; #S2; #S3; #H12; #H23; #x; #H; - napply (H23 ??); napply (H12 ??); nassumption; +nlemma subseteq_trans: ∀A.∀S,T,U: Ω \sup A. S ⊆ T → T ⊆ U → S ⊆ U. + #A; #S; #T; #U; #H1; #H2; #x; #P; napply H2; napply H1; nassumption. nqed. -ndefinition overlaps ≝ λA.λU,V:Ω \sup A.∃x:A.x ∈ U ∧ x ∈ V. +include "properties/relations1.ma". -interpretation "overlaps" 'overlaps U V = (overlaps ? U V). +ndefinition seteq: ∀A. equivalence_relation1 (Ω \sup A). + #A; napply mk_equivalence_relation1 + [ napply (λS,S'. S ⊆ S' ∧ S' ⊆ S) + | #S; napply conj; napply subseteq_refl + | #S; #S'; *; #H1; #H2; napply conj; nassumption + | #S; #T; #U; *; #H1; #H2; *; #H3; #H4; napply conj; napply subseteq_trans; + ##[##2,5: nassumption |##1,4: ##skip |##*: nassumption]##] +nqed. -ndefinition intersects ≝ λA.λU,V:Ω \sup A. {x | x ∈ U ∧ x ∈ V }. +include "sets/setoids1.ma". -interpretation "intersects" 'intersects U V = (intersects ? U V). +ndefinition powerclass_setoid: Type[0] → setoid1. + #A; napply mk_setoid1 + [ napply (Ω \sup A) + | napply seteq ] +nqed. -ndefinition union ≝ λA.λU,V:Ω \sup A. {x | x ∈ U ∨ x ∈ V }. +unification hint 0 (∀A. (λx,y.True) (carr1 (powerclass_setoid A)) (Ω \sup A)). -interpretation "union" 'union U V = (union ? U V). +(************ SETS OVER SETOIDS ********************) + +include "logic/cprop.ma". + +nrecord qpowerclass (A: setoid) : Type[1] ≝ + { pc:> Ω \sup A; + mem_ok': ∀x,x':A. x=x' → (x ∈ pc) = (x' ∈ pc) + }. + +ndefinition Full_set: ∀A. qpowerclass A. + #A; napply mk_qpowerclass + [ napply (full_set A) + | #x; #x'; #H; nnormalize in ⊢ (?%?%%); (* bug universi qui napply refl1;*) + napply mk_iff; #K; nassumption ] +nqed. + +ndefinition qseteq: ∀A. equivalence_relation1 (qpowerclass A). + #A; napply mk_equivalence_relation1 + [ napply (λS,S':qpowerclass A. eq_rel1 ? (eq1 (powerclass_setoid A)) S S') + | #S; napply (refl1 ? (seteq A)) + | #S; #S'; napply (sym1 ? (seteq A)) + | #S; #T; #U; napply (trans1 ? (seteq A))] +nqed. + +ndefinition qpowerclass_setoid: setoid → setoid1. + #A; napply mk_setoid1 + [ napply (qpowerclass A) + | napply (qseteq A) ] +nqed. + +unification hint 0 (∀A. (λx,y.True) (carr1 (qpowerclass_setoid A)) (qpowerclass A)). +ncoercion qpowerclass_hint: ∀A: setoid. ∀S: qpowerclass_setoid A. Ω \sup A ≝ λA.λS.S + on _S: (carr1 (qpowerclass_setoid ?)) to (Ω \sup ?). + +nlemma mem_ok: ∀A. binary_morphism1 (setoid1_of_setoid A) (qpowerclass_setoid A) CPROP. + #A; napply mk_binary_morphism1 + [ napply (λx.λS: qpowerclass_setoid A. x ∈ S) (* CSC: ??? *) + | #a; #a'; #b; #b'; #Ha; #Hb; (* CSC: qui *; non funziona *) + nwhd; nwhd in ⊢ (? (? % ??) (? % ??)); napply mk_iff; #H + [ ncases Hb; #Hb1; #_; napply Hb1; napply (. (mem_ok' …)) + [ nassumption | napply Ha^-1 | ##skip ] + ##| ncases Hb; #_; #Hb2; napply Hb2; napply (. (mem_ok' …)) + [ nassumption | napply Ha | ##skip ]##] +nqed. -ndefinition singleton ≝ λA.λa:A.{b | a=b}. +unification hint 0 (∀A,x,S. (λx,y.True) (fun21 ??? (mem_ok A) x S) (mem A S x)). + +nlemma subseteq_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) CPROP. + #A; napply mk_binary_morphism1 + [ napply (λS,S': qpowerclass_setoid ?. S ⊆ S') + | #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; napply mk_iff; #H + [ napply (subseteq_trans … a' a) (* anche qui, perche' serve a'? *) + [ nassumption | napply (subseteq_trans … a b); nassumption ] + ##| napply (subseteq_trans … a a') (* anche qui, perche' serve a'? *) + [ nassumption | napply (subseteq_trans … a' b'); nassumption ] ##] +nqed. + +nlemma intersect_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) (qpowerclass_setoid A). + #A; napply mk_binary_morphism1 + [ #S; #S'; napply mk_qpowerclass + [ napply (S ∩ S') + | #a; #a'; #Ha; nwhd in ⊢ (? ? ? % %); napply mk_iff; *; #H1; #H2; napply conj + [##1,2: napply (. (mem_ok' …)^-1) [##3,6: nassumption |##1,4: nassumption |##*: ##skip] + ##|##3,4: napply (. (mem_ok' …)) [##2,5: nassumption |##1,4: nassumption |##*: ##skip]##]##] + ##| #a; #a'; #b; #b'; #Ha; #Hb; nwhd; napply conj; #x; nwhd in ⊢ (% → %); #H + [ napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption + | napply (. ((#‡Ha)‡(#‡Hb))); nassumption ]##] +nqed. + +unification hint 0 (∀A.∀U,V.(λx,y.True) (fun21 ??? (intersect_ok A) U V) (intersect A U V)). + +nlemma test: ∀A:setoid. ∀U,V:qpowerclass A. ∀x,x':setoid1_of_setoid A. x=x' → x ∈ U ∩ V → x' ∈ U ∩ V. + #A; #U; #V; #x; #x'; #H; #p; + (* CSC: senza la change non funziona! *) + nchange with (x' ∈ (fun21 ??? (intersect_ok A) U V)); + napply (. (H^-1‡#)); nassumption. +nqed. + +(* +(* qui non funziona una cippa *) +ndefinition image: ∀A,B. (carr A → carr B) → Ω \sup A → Ω \sup B ≝ + λA,B:setoid.λf:carr A → carr B.λSa:Ω \sup A. + {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq B) ? ?(*(f x) y*)}. + ##[##2: napply (f x); ##|##3: napply y] + #a; #a'; #H; nwhd; nnormalize; (* per togliere setoid1_of_setoid *) napply (mk_iff ????); + *; #x; #Hx; napply (ex_intro … x) + [ napply (. (#‡(#‡#))); + +ndefinition counter_image: ∀A,B. (A → B) → Ω \sup B → Ω \sup A ≝ + λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}. +*) + +(******************* compatible equivalence relations **********************) + +nrecord compatible_equivalence_relation (A: setoid) : Type[1] ≝ + { rel:> equivalence_relation A; + compatibility: ∀x,x':A. x=x' → eq_rel ? rel x x' (* coercion qui non va *) + }. + +ndefinition quotient: ∀A. compatible_equivalence_relation A → setoid. + #A; #R; napply mk_setoid + [ napply A + | napply R] +nqed. + +(******************* first omomorphism theorem for sets **********************) + +ndefinition eqrel_of_morphism: + ∀A,B. unary_morphism A B → compatible_equivalence_relation A. + #A; #B; #f; napply mk_compatible_equivalence_relation + [ napply mk_equivalence_relation + [ napply (λx,y. f x = f y) + | #x; napply refl | #x; #y; napply sym | #x; #y; #z; napply trans] +##| #x; #x'; #H; nwhd; napply (.= (†H)); napply refl ] +nqed. + +ndefinition canonical_proj: ∀A,R. unary_morphism A (quotient A R). + #A; #R; napply mk_unary_morphism + [ napply (λx.x) | #a; #a'; #H; napply (compatibility ? R … H) ] +nqed. + +ndefinition quotiented_mor: + ∀A,B.∀f:unary_morphism A B. + unary_morphism (quotient ? (eqrel_of_morphism ?? f)) B. + #A; #B; #f; napply mk_unary_morphism + [ napply f | #a; #a'; #H; nassumption] +nqed. + +nlemma first_omomorphism_theorem_functions1: + ∀A,B.∀f: unary_morphism A B. + ∀x. f x = quotiented_mor ??? (canonical_proj ? (eqrel_of_morphism ?? f) x). + #A; #B; #f; #x; napply refl; +nqed. + +ndefinition surjective ≝ + λA,B.λS: qpowerclass A.λT: qpowerclass B.λf:unary_morphism A B. + ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y. + +ndefinition injective ≝ + λA,B.λS: qpowerclass A.λf:unary_morphism A B. + ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'. + +nlemma first_omomorphism_theorem_functions2: + ∀A,B.∀f: unary_morphism A B. surjective ?? (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism ?? f)). + #A; #B; #f; nwhd; #y; #Hy; napply (ex_intro … y); napply conj + [ napply I | napply refl] +nqed. + +nlemma first_omomorphism_theorem_functions3: + ∀A,B.∀f: unary_morphism A B. injective ?? (Full_set ?) (quotiented_mor ?? f). + #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption. +nqed. -interpretation "singleton" 'singl a = (singleton ? a). +nrecord isomorphism (A) (B) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝ + { iso_f:> unary_morphism A B; + f_sur: surjective ?? S T iso_f; + f_inj: injective ?? S iso_f + }.