X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsets.ma;h=c4fc89f210b0c90f5a049d80442f0cf6b7222e11;hb=8cb2490b5b202549a596cfd1d0f166a5ee43fc4e;hp=eb99ee4c5c22595075b5dae056155cacb7d856ca;hpb=96881c08dcd617524621fb2f241fe38da81f2083;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index eb99ee4c5..c4fc89f21 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -12,41 +12,256 @@ (* *) (**************************************************************************) -include "logic/equality.ma". +(******************* SETS OVER TYPES *****************) -nrecord powerset (A: Type) : Type[1] ≝ { mem: A → CProp }. +include "logic/connectives.ma". -interpretation "powerset" 'powerset A = (powerset A). - -interpretation "subset construction" 'subset \eta.x = (mk_powerset ? x). +nrecord powerclass (A: Type[0]) : Type[1] ≝ { mem: A → CProp[0] }. interpretation "mem" 'mem a S = (mem ? S a). +interpretation "powerclass" 'powerset A = (powerclass A). +interpretation "subset construction" 'subset \eta.x = (mk_powerclass ? x). ndefinition subseteq ≝ λA.λU,V.∀a:A. a ∈ U → a ∈ V. - interpretation "subseteq" 'subseteq U V = (subseteq ? U V). -ntheorem subseteq_refl: ∀A.∀S:Ω \sup A.S ⊆ S. - #A; #S; #x; #H; nassumption; +ndefinition overlaps ≝ λA.λU,V.∃x:A.x ∈ U ∧ x ∈ V. +interpretation "overlaps" 'overlaps U V = (overlaps ? U V). + +ndefinition intersect ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ x ∈ V }. +interpretation "intersect" 'intersects U V = (intersect ? U V). + +ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }. +interpretation "union" 'union U V = (union ? U V). + +ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }. + +ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }. + +ndefinition full_set: ∀A. Ω^A ≝ λA.{ x | True }. + +nlemma subseteq_refl: ∀A.∀S: Ω^A. S ⊆ S. + #A; #S; #x; #H; nassumption. nqed. -ntheorem subseteq_trans: ∀A.∀S1,S2,S3: Ω \sup A. S1 ⊆ S2 → S2 ⊆ S3 → S1 ⊆ S3. - #A; #S1; #S2; #S3; #H12; #H23; #x; #H; - napply H23; napply H12; nassumption; +nlemma subseteq_trans: ∀A.∀S,T,U: Ω^A. S ⊆ T → T ⊆ U → S ⊆ U. + #A; #S; #T; #U; #H1; #H2; #x; #P; napply H2; napply H1; nassumption. nqed. -ndefinition overlaps ≝ λA.λU,V:Ω \sup A.∃x:A.x ∈ U ∧ x ∈ V. +include "properties/relations1.ma". -interpretation "overlaps" 'overlaps U V = (overlaps ? U V). +ndefinition seteq: ∀A. equivalence_relation1 (Ω^A). + #A; @ + [ napply (λS,S'. S ⊆ S' ∧ S' ⊆ S) + | #S; @; napply subseteq_refl + | #S; #S'; *; #H1; #H2; @; nassumption + | #S; #T; #U; *; #H1; #H2; *; #H3; #H4; @; napply subseteq_trans; + ##[##2,5: nassumption |##1,4: ##skip |##*: nassumption]##] +nqed. -ndefinition intersects ≝ λA.λU,V:Ω \sup A. {x | x ∈ U ∧ x ∈ V }. +include "sets/setoids1.ma". -interpretation "intersects" 'intersects U V = (intersects ? U V). +(* this has to be declared here, so that it is combined with carr *) +ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?). -ndefinition union ≝ λA.λU,V:Ω \sup A. {x | x ∈ U ∨ x ∈ V }. +ndefinition powerclass_setoid: Type[0] → setoid1. + #A; @[ napply (Ω^A)| napply seteq ] +nqed. -interpretation "union" 'union U V = (union ? U V). +include "hints_declaration.ma". + +alias symbol "hint_decl" = "hint_decl_Type2". +unification hint 0 ≔ A ⊢ carr1 (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) ≡ Ω^A. + +(************ SETS OVER SETOIDS ********************) + +include "logic/cprop.ma". + +nrecord qpowerclass (A: setoid) : Type[1] ≝ + { pc:> Ω^A; (* qui pc viene dichiarato con un target preciso... + forse lo si vorrebbe dichiarato con un target più lasco + ma la sintassi :> non lo supporta *) + mem_ok': ∀x,x':A. x=x' → (x ∈ pc) = (x' ∈ pc) + }. + +ndefinition Full_set: ∀A. qpowerclass A. + #A; @[ napply A | #x; #x'; #H; napply refl1] +nqed. +ncoercion Full_set: ∀A. qpowerclass A ≝ Full_set on A: setoid to qpowerclass ?. + +ndefinition qseteq: ∀A. equivalence_relation1 (qpowerclass A). + #A; @ + [ napply (λS,S'. S = S') + | #S; napply (refl1 ? (seteq A)) + | #S; #S'; napply (sym1 ? (seteq A)) + | #S; #T; #U; napply (trans1 ? (seteq A))] +nqed. + +ndefinition qpowerclass_setoid: setoid → setoid1. + #A; @ + [ napply (qpowerclass A) + | napply (qseteq A) ] +nqed. + +unification hint 0 ≔ A ⊢ + carr1 (qpowerclass_setoid A) ≡ qpowerclass A. + +(*CSC: non va! +unification hint 0 ≔ A ⊢ + carr1 (mk_setoid1 (qpowerclass A) (eq1 (qpowerclass_setoid A))) ≡ qpowerclass A.*) + +nlemma mem_ok: ∀A. binary_morphism1 (setoid1_of_setoid A) (qpowerclass_setoid A) CPROP. + #A; @ + [ napply (λx,S. x ∈ S) + | #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H; + ##[ napply Hb1; napply (. (mem_ok' …)); ##[##3: napply H| napply Ha^-1;##] + ##| napply Hb2; napply (. (mem_ok' …)); ##[##3: napply H| napply Ha;##] + ##] + ##] +nqed. + +(*CSC: bug qui se metto x o S al posto di ? +nlemma foo: True. +nletin xxx ≝ (λA:setoid.λx,S. let SS ≝ pc ? S in + fun21 ??? (mk_binary_morphism1 ??? (λx.λS. ? ∈ ?) (prop21 ??? (mem_ok A))) x S); +*) +unification hint 0 ≔ A:setoid, x, S; + SS ≟ (pc ? S) + (*-------------------------------------*) ⊢ + fun21 ??? (mk_binary_morphism1 ??? (λx,S. x ∈ S) (prop21 ??? (mem_ok A))) x S ≡ mem A SS x. + +nlemma subseteq_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) CPROP. + #A; @ + [ napply (λS,S'. S ⊆ S') + | #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #H + [ napply (subseteq_trans … a) + [ nassumption | napply (subseteq_trans … b); nassumption ] + ##| napply (subseteq_trans … a') + [ nassumption | napply (subseteq_trans … b'); nassumption ] ##] +nqed. + +unification hint 0 ≔ A,a,a' + (*-----------------------------------------------------------------*) ⊢ + eq_rel ? (eq A) a a' ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) a a'. + +nlemma intersect_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) (qpowerclass_setoid A). + #A; @ + [ #S; #S'; @ + [ napply (S ∩ S') + | #a; #a'; #Ha; + nwhd in ⊢ (? ? ? % %); @; *; #H1; #H2; @ + [##1,2: napply (. Ha^-1‡#); nassumption; + ##|##3,4: napply (. Ha‡#); nassumption]##] + ##| #a; #a'; #b; #b'; #Ha; #Hb; nwhd; @; #x; nwhd in ⊢ (% → %); #H + [ alias symbol "invert" = "setoid1 symmetry". + napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption + | napply (. ((#‡Ha)‡(#‡Hb))); nassumption ]##] +nqed. + +(* unfold if intersect, exposing fun21 *) +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ + A : setoid, B,C : qpowerclass A ⊢ + pc A (intersect_ok A B C) ≡ intersect ? (pc ? B) (pc ? C). + +nlemma test: ∀A:setoid. ∀U,V:qpowerclass A. ∀x,x':setoid1_of_setoid A. x=x' → x ∈ U ∩ V → x' ∈ U ∩ V. + #A; #U; #V; #x; #x'; #H; #p; napply (. (H^-1‡#)); nassumption. +nqed. + +ndefinition image: ∀A,B. (carr A → carr B) → Ω^A → Ω^B ≝ + λA,B:setoid.λf:carr A → carr B.λSa:Ω^A. + {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq B) (f x) y}. + +ndefinition counter_image: ∀A,B. (carr A → carr B) → Ω^B → Ω^A ≝ + λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}. + +(******************* compatible equivalence relations **********************) + +nrecord compatible_equivalence_relation (A: setoid) : Type[1] ≝ + { rel:> equivalence_relation A; + compatibility: ∀x,x':A. x=x' → rel x x' + }. + +ndefinition quotient: ∀A. compatible_equivalence_relation A → setoid. + #A; #R; @ A R; +nqed. + +(******************* first omomorphism theorem for sets **********************) + +ndefinition eqrel_of_morphism: + ∀A,B. unary_morphism A B → compatible_equivalence_relation A. + #A; #B; #f; @ + [ @ + [ napply (λx,y. f x = f y) + | #x; napply refl | #x; #y; napply sym | #x; #y; #z; napply trans] +##| #x; #x'; #H; nwhd; alias symbol "prop1" = "prop1". +napply (.= (†H)); napply refl ] +nqed. + +ndefinition canonical_proj: ∀A,R. unary_morphism A (quotient A R). + #A; #R; @ + [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ] +nqed. + +ndefinition quotiented_mor: + ∀A,B.∀f:unary_morphism A B. + unary_morphism (quotient … (eqrel_of_morphism … f)) B. + #A; #B; #f; @ + [ napply f | #a; #a'; #H; nassumption] +nqed. + +nlemma first_omomorphism_theorem_functions1: + ∀A,B.∀f: unary_morphism A B. + ∀x. f x = quotiented_mor … (canonical_proj … (eqrel_of_morphism … f) x). + #A; #B; #f; #x; napply refl; +nqed. + +ndefinition surjective ≝ + λA,B.λS: qpowerclass A.λT: qpowerclass B.λf:unary_morphism A B. + ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y. + +ndefinition injective ≝ + λA,B.λS: qpowerclass A.λf:unary_morphism A B. + ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'. + +nlemma first_omomorphism_theorem_functions2: + ∀A,B.∀f: unary_morphism A B. + surjective … (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism … f)). + #A; #B; #f; nwhd; #y; #Hy; @ y; @ I ; napply refl; + (* bug, prova @ I refl *) +nqed. + +nlemma first_omomorphism_theorem_functions3: + ∀A,B.∀f: unary_morphism A B. + injective … (Full_set ?) (quotiented_mor … f). + #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption. +nqed. -ndefinition singleton ≝ λA.λa:A.{b | a=b}. +nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : Type[0] ≝ + { iso_f:> unary_morphism A B; + f_closed: ∀x. x ∈ S → iso_f x ∈ T; + f_sur: surjective … S T iso_f; + f_inj: injective … S iso_f + }. -interpretation "singleton" 'singl a = (singleton ? a). +(* +nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝ + { iso_f:> unary_morphism A B; + f_closed: ∀x. x ∈ pc A S → fun1 ?? iso_f x ∈ pc B T}. + + +ncheck (λA:?. + λB:?. + λS:?. + λT:?. + λxxx:isomorphism A B S T. + match xxx + return λxxx:isomorphism A B S T. + ∀x: carr A. + ∀x_72: mem (carr A) (pc A S) x. + mem (carr B) (pc B T) (fun1 A B ((λ_.?) A B S T xxx) x) + with [ mk_isomorphism _ yyy ⇒ yyy ] ). + + ; + }. +*)