X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsets.ma;h=c66b51e2dbb6a98efa6bf7249e8817aaf6b529b0;hb=fd52068e75c3ea1e67b2066ac9f7e2a862148a18;hp=5ba0b08a6f856a40e3199c5cbda4fe439b53def0;hpb=4ae18461e6dfbf0011c062ab56fe85be00f011ec;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index 5ba0b08a6..c66b51e2d 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -12,45 +12,354 @@ (* *) (**************************************************************************) -include "logic/connectives.ma". - -nrecord powerset (A: Type) : Type[1] ≝ { mem: A → CProp }. -(* This is a projection! *) -ndefinition mem ≝ λA.λr:powerset A.match r with [mk_powerset f ⇒ f]. +(******************* SETS OVER TYPES *****************) -interpretation "powerset" 'powerset A = (powerset A). +include "logic/connectives.ma". -interpretation "subset construction" 'subset \eta.x = (mk_powerset ? x). +nrecord powerclass (A: Type[0]) : Type[1] ≝ { mem: A → CProp[0] }. interpretation "mem" 'mem a S = (mem ? S a). +interpretation "powerclass" 'powerset A = (powerclass A). +interpretation "subset construction" 'subset \eta.x = (mk_powerclass ? x). ndefinition subseteq ≝ λA.λU,V.∀a:A. a ∈ U → a ∈ V. - interpretation "subseteq" 'subseteq U V = (subseteq ? U V). -ntheorem subseteq_refl: ∀A.∀S:Ω \sup A.S ⊆ S. - #A; #S; #x; #H; nassumption; +ndefinition overlaps ≝ λA.λU,V.∃x:A.x ∈ U ∧ x ∈ V. +interpretation "overlaps" 'overlaps U V = (overlaps ? U V). + +ndefinition intersect ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ x ∈ V }. +interpretation "intersect" 'intersects U V = (intersect ? U V). + +ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }. +interpretation "union" 'union U V = (union ? U V). + +ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }. + +ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }. + +ndefinition full_set: ∀A. Ω^A ≝ λA.{ x | True }. + +nlemma subseteq_refl: ∀A.∀S: Ω^A. S ⊆ S. +//.nqed. + +nlemma subseteq_trans: ∀A.∀S,T,U: Ω^A. S ⊆ T → T ⊆ U → S ⊆ U. +/3/.nqed. + +include "properties/relations1.ma". + +ndefinition seteq: ∀A. equivalence_relation1 (Ω^A). + #A; @ + [ napply (λS,S'. S ⊆ S' ∧ S' ⊆ S) + | /2/ + | #S; #S'; *; /2/ + | #S; #T; #U; *; #H1; #H2; *; /3/] nqed. -ntheorem subseteq_trans: ∀A.∀S1,S2,S3: Ω \sup A. S1 ⊆ S2 → S2 ⊆ S3 → S1 ⊆ S3. - #A; #S1; #S2; #S3; #H12; #H23; #x; #H; - napply (H23 ??); napply (H12 ??); nassumption; +include "sets/setoids1.ma". + +(* this has to be declared here, so that it is combined with carr *) +ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?). + +ndefinition powerclass_setoid: Type[0] → setoid1. + #A; @(Ω^A);//. nqed. -ndefinition overlaps ≝ λA.λU,V:Ω \sup A.∃x:A.x ∈ U ∧ x ∈ V. +include "hints_declaration.ma". -interpretation "overlaps" 'overlaps U V = (overlaps ? U V). +alias symbol "hint_decl" = "hint_decl_Type2". +unification hint 0 ≔ A ⊢ carr1 (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) ≡ Ω^A. -ndefinition intersects ≝ λA.λU,V:Ω \sup A. {x | x ∈ U ∧ x ∈ V }. +(************ SETS OVER SETOIDS ********************) -interpretation "intersects" 'intersects U V = (intersects ? U V). +include "logic/cprop.ma". -ndefinition union ≝ λA.λU,V:Ω \sup A. {x | x ∈ U ∨ x ∈ V }. +nrecord ext_powerclass (A: setoid) : Type[1] ≝ + { ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso... + forse lo si vorrebbe dichiarato con un target più lasco + ma la sintassi :> non lo supporta *) + ext_prop: ∀x,x':A. x=x' → (x ∈ ext_carr) = (x' ∈ ext_carr) + }. + +notation > "𝛀 ^ term 90 A" non associative with precedence 70 +for @{ 'ext_powerclass $A }. -interpretation "union" 'union U V = (union ? U V). +notation "Ω term 90 A \atop ≈" non associative with precedence 70 +for @{ 'ext_powerclass $A }. + +interpretation "extensional powerclass" 'ext_powerclass a = (ext_powerclass a). +ndefinition Full_set: ∀A. 𝛀^A. + #A; @[ napply A | #x; #x'; #H; napply refl1] +nqed. +ncoercion Full_set: ∀A. ext_powerclass A ≝ Full_set on A: setoid to ext_powerclass ?. + +ndefinition ext_seteq: ∀A. equivalence_relation1 (𝛀^A). + #A; @ [ napply (λS,S'. S = S') ] /2/. +nqed. + +ndefinition ext_powerclass_setoid: setoid → setoid1. + #A; @ (ext_seteq A). +nqed. + +unification hint 0 ≔ A; + R ≟ (mk_setoid1 (𝛀^A) (eq1 (ext_powerclass_setoid A))) + (* ----------------------------------------------------- *) ⊢ + carr1 R ≡ ext_powerclass A. + +(* +interpretation "prop21 mem" 'prop2 l r = (prop21 (setoid1_of_setoid ?) (ext_powerclass_setoid ?) ? ? ???? l r). +*) + (* -ndefinition singleton ≝ λA.λa:A.{b | a=b}. +ncoercion ext_carr' : ∀A.∀x:ext_powerclass_setoid A. Ω^A ≝ ext_carr +on _x : (carr1 (ext_powerclass_setoid ?)) to (Ω^?). +*) + +nlemma mem_ext_powerclass_setoid_is_morph: + ∀A. unary_morphism1 (setoid1_of_setoid A) (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP). + #A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S)); + #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H + [ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/. +nqed. + +unification hint 0 ≔ A:setoid, x, S; + SS ≟ (ext_carr ? S), + TT ≟ (mk_unary_morphism1 … + (λx:setoid1_of_setoid ?. + mk_unary_morphism1 … + (λS:ext_powerclass_setoid ?. x ∈ S) + (prop11 … (mem_ext_powerclass_setoid_is_morph A x))) + (prop11 … (mem_ext_powerclass_setoid_is_morph A))), + XX ≟ (ext_powerclass_setoid A) + (*-------------------------------------*) ⊢ + fun11 (setoid1_of_setoid A) + (unary_morphism1_setoid1 XX CPROP) TT x S + ≡ mem A SS x. + +nlemma subseteq_is_morph: ∀A. unary_morphism1 (ext_powerclass_setoid A) + (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP). + #A; napply (mk_binary_morphism1 … (λS,S':𝛀^A. S ⊆ S')); + #a; #a'; #b; #b'; *; #H1; #H2; *; /4/. +nqed. + +unification hint 0 ≔ A,a,a' + (*-----------------------------------------------------------------*) ⊢ + eq_rel ? (eq A) a a' ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) a a'. + +nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. + #A; #S; #S'; @ (S ∩ S'); + #a; #a'; #Ha; @; *; #H1; #H2; @ + [##1,2: napply (. Ha^-1‡#); nassumption; +##|##3,4: napply (. Ha‡#); nassumption] +nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ + A : setoid, B,C : ext_powerclass A; + R ≟ (mk_ext_powerclass ? (B ∩ C) (ext_prop ? (intersect_is_ext ? B C))) + + (* ------------------------------------------*) ⊢ + ext_carr A R ≡ intersect ? (ext_carr ? B) (ext_carr ? C). + +nlemma intersect_is_morph: + ∀A. unary_morphism1 (powerclass_setoid A) (unary_morphism1_setoid1 (powerclass_setoid A) (powerclass_setoid A)). + #A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S')); + #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/. +nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ + A : Type[0], B,C : Ω^A; + R ≟ (mk_binary_morphism1 … + (λS,S'.S ∩ S') + (prop21 … (intersect_is_morph A))) + ⊢ + fun21 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A) R B C + ≡ intersect ? B C. -interpretation "singleton" 'singl a = (singleton ? a). -*) \ No newline at end of file +interpretation "prop21 ext" 'prop2 l r = (prop21 (ext_powerclass_setoid ?) (ext_powerclass_setoid ?) ? ? ???? l r). + +nlemma intersect_is_ext_morph: + ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A). + #A; @ (intersect_is_ext …); nlapply (prop21 … (intersect_is_morph A)); +#H; #a; #a'; #b; #b'; #H1; #H2; napply H; nassumption; +nqed. + +unification hint 1 ≔ + A:setoid, B,C : 𝛀^A; + R ≟ (mk_binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A) + (λS,S':carr1 (ext_powerclass_setoid A). + mk_ext_powerclass A (S∩S') (ext_prop A (intersect_is_ext ? S S'))) + (prop21 … (intersect_is_ext_morph A))) , + BB ≟ (ext_carr ? B), + CC ≟ (ext_carr ? C) + (* ------------------------------------------------------*) ⊢ + ext_carr A + (fun21 + (ext_powerclass_setoid A) + (ext_powerclass_setoid A) + (ext_powerclass_setoid A) R B C) ≡ + intersect (carr A) BB CC. + +(* +alias symbol "hint_decl" = "hint_decl_Type2". +unification hint 0 ≔ + A : setoid, B,C : 𝛀^A ; + CC ≟ (ext_carr ? C), + BB ≟ (ext_carr ? B), + C1 ≟ (carr1 (powerclass_setoid (carr A))), + C2 ≟ (carr1 (ext_powerclass_setoid A)) + ⊢ + eq_rel1 C1 (eq1 (powerclass_setoid (carr A))) BB CC ≡ + eq_rel1 C2 (eq1 (ext_powerclass_setoid A)) B C. + +unification hint 0 ≔ + A, B : CPROP ⊢ iff A B ≡ eq_rel1 ? (eq1 CPROP) A B. + +nlemma test: ∀U.∀A,B:𝛀^U. A ∩ B = A → + ∀x,y. x=y → x ∈ A → y ∈ A ∩ B. + #U; #A; #B; #H; #x; #y; #K; #K2; + alias symbol "prop2" = "prop21 mem". + alias symbol "invert" = "setoid1 symmetry". + napply (. K^-1‡H); + nassumption; +nqed. + + +nlemma intersect_ok: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A). + #A; @ + [ #S; #S'; @ + [ napply (S ∩ S') + | #a; #a'; #Ha; + nwhd in ⊢ (? ? ? % %); @; *; #H1; #H2; @ + [##1,2: napply (. Ha^-1‡#); nassumption; + ##|##3,4: napply (. Ha‡#); nassumption]##] + ##| #a; #a'; #b; #b'; #Ha; #Hb; nwhd; @; #x; nwhd in ⊢ (% → %); #H + [ alias symbol "invert" = "setoid1 symmetry". + alias symbol "refl" = "refl". +alias symbol "prop2" = "prop21". +napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption + | napply (. ((#‡Ha)‡(#‡Hb))); nassumption ]##] +nqed. + +(* unfold if intersect, exposing fun21 *) +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ + A : setoid, B,C : ext_powerclass A ⊢ + pc A (fun21 … + (mk_binary_morphism1 … + (λS,S':qpowerclass_setoid A.mk_qpowerclass ? (S ∩ S') (mem_ok' ? (intersect_ok ? S S'))) + (prop21 … (intersect_ok A))) + B + C) + ≡ intersect ? (pc ? B) (pc ? C). + +nlemma test: ∀A:setoid. ∀U,V:qpowerclass A. ∀x,x':setoid1_of_setoid A. x=x' → x ∈ U ∩ V → x' ∈ U ∩ V. + #A; #U; #V; #x; #x'; #H; #p; napply (. (H^-1‡#)); nassumption. +nqed. +*) + +ndefinition image: ∀A,B. (carr A → carr B) → Ω^A → Ω^B ≝ + λA,B:setoid.λf:carr A → carr B.λSa:Ω^A. + {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq B) (f x) y}. + +ndefinition counter_image: ∀A,B. (carr A → carr B) → Ω^B → Ω^A ≝ + λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}. + +(******************* compatible equivalence relations **********************) + +nrecord compatible_equivalence_relation (A: setoid) : Type[1] ≝ + { rel:> equivalence_relation A; + compatibility: ∀x,x':A. x=x' → rel x x' + }. + +ndefinition quotient: ∀A. compatible_equivalence_relation A → setoid. + #A; #R; @ A R; +nqed. + +(******************* first omomorphism theorem for sets **********************) + +ndefinition eqrel_of_morphism: + ∀A,B. unary_morphism A B → compatible_equivalence_relation A. + #A; #B; #f; @ + [ @ [ napply (λx,y. f x = f y) ] /2/; +##| #x; #x'; #H; nwhd; alias symbol "prop1" = "prop1". +napply (.= (†H)); // ] +nqed. + +ndefinition canonical_proj: ∀A,R. unary_morphism A (quotient A R). + #A; #R; @ + [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ] +nqed. + +ndefinition quotiented_mor: + ∀A,B.∀f:unary_morphism A B. + unary_morphism (quotient … (eqrel_of_morphism … f)) B. + #A; #B; #f; @ [ napply f ] //. +nqed. + +nlemma first_omomorphism_theorem_functions1: + ∀A,B.∀f: unary_morphism A B. + ∀x. f x = quotiented_mor … (canonical_proj … (eqrel_of_morphism … f) x). +//. nqed. + +alias symbol "eq" = "setoid eq". +ndefinition surjective ≝ + λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:unary_morphism A B. + ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y. + +ndefinition injective ≝ + λA,B.λS: ext_powerclass A.λf:unary_morphism A B. + ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'. + +nlemma first_omomorphism_theorem_functions2: + ∀A,B.∀f: unary_morphism A B. + surjective … (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism … f)). +/3/. nqed. + +nlemma first_omomorphism_theorem_functions3: + ∀A,B.∀f: unary_morphism A B. + injective … (Full_set ?) (quotiented_mor … f). + #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption. +nqed. + +nrecord isomorphism (A, B : setoid) (S: ext_powerclass A) (T: ext_powerclass B) : Type[0] ≝ + { iso_f:> unary_morphism A B; + f_closed: ∀x. x ∈ S → iso_f x ∈ T; + f_sur: surjective … S T iso_f; + f_inj: injective … S iso_f + }. + +nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W. +#A; #U; #V; #W; *; #H; #x; *; /2/. +nqed. + +nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W. +#A; #U; #V; #W; #H; #H1; #x; *; /2/. +nqed. + +nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V. +/3/. nqed. + +(* +nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝ + { iso_f:> unary_morphism A B; + f_closed: ∀x. x ∈ pc A S → fun1 ?? iso_f x ∈ pc B T}. + + +ncheck (λA:?. + λB:?. + λS:?. + λT:?. + λxxx:isomorphism A B S T. + match xxx + return λxxx:isomorphism A B S T. + ∀x: carr A. + ∀x_72: mem (carr A) (pc A S) x. + mem (carr B) (pc B T) (fun1 A B ((λ_.?) A B S T xxx) x) + with [ mk_isomorphism _ yyy ⇒ yyy ] ). + + ; + }. +*)