X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsets.ma;h=c8f303a6b407920f101126160a4b6d6333d9acfc;hb=e880d6eab5e1700f4a625ddcd7d0fa8f0cce2dcc;hp=5ec6f42a8c7f9858f7b6201ac0a4c4228c2f3a75;hpb=835f6498543d1f20cb02d134c1b22be7d622420e;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index 5ec6f42a8..c8f303a6b 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -28,120 +28,506 @@ interpretation "subseteq" 'subseteq U V = (subseteq ? U V). ndefinition overlaps ≝ λA.λU,V.∃x:A.x ∈ U ∧ x ∈ V. interpretation "overlaps" 'overlaps U V = (overlaps ? U V). -ndefinition intersect ≝ λA.λU,V:Ω \sup A.{ x | x ∈ U ∧ x ∈ V }. +ndefinition intersect ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ x ∈ V }. interpretation "intersect" 'intersects U V = (intersect ? U V). -ndefinition union ≝ λA.λU,V:Ω \sup A.{ x | x ∈ U ∨ x ∈ V }. +ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }. interpretation "union" 'union U V = (union ? U V). -nlemma subseteq_refl: ∀A.∀S: Ω \sup A. S ⊆ S. - #A; #S; #x; #H; nassumption. -nqed. +ndefinition substract ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ ¬ x ∈ V }. +interpretation "substract" 'minus U V = (substract ? U V). -nlemma subseteq_trans: ∀A.∀S,T,U: Ω \sup A. S ⊆ T → T ⊆ U → S ⊆ U. - #A; #S; #T; #U; #H1; #H2; #x; #P; napply H2; napply H1; nassumption. -nqed. + +ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }. + +ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }. + +ndefinition full_set: ∀A. Ω^A ≝ λA.{ x | True }. + +nlemma subseteq_refl: ∀A.∀S: Ω^A. S ⊆ S. +//.nqed. + +nlemma subseteq_trans: ∀A.∀S,T,U: Ω^A. S ⊆ T → T ⊆ U → S ⊆ U. +/3/.nqed. include "properties/relations1.ma". -ndefinition seteq: ∀A. equivalence_relation1 (Ω \sup A). - #A; napply mk_equivalence_relation1 - [ napply (λS,S'. S ⊆ S' ∧ S' ⊆ S) - | #S; napply conj; napply subseteq_refl - | #S; #S'; *; #H1; #H2; napply conj; nassumption - | #S; #T; #U; *; #H1; #H2; *; #H3; #H4; napply conj; napply subseteq_trans; - ##[##2,5: nassumption |##1,4: ##skip |##*: nassumption]##] -nqed. +ndefinition seteq: ∀A. equivalence_relation1 (Ω^A). +#A; @(λS,S'. S ⊆ S' ∧ S' ⊆ S); /2/; ##[ #A B; *; /3/] +#S T U; *; #H1 H2; *; /4/; +nqed. include "sets/setoids1.ma". +ndefinition singleton ≝ λA:setoid.λa:A.{ x | a = x }. +interpretation "singl" 'singl a = (singleton ? a). + +(* this has to be declared here, so that it is combined with carr *) +ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?). + ndefinition powerclass_setoid: Type[0] → setoid1. - #A; napply mk_setoid1 - [ napply (Ω \sup A) - | napply seteq ] -nqed. + #A; @(Ω^A);//. +nqed. + +alias symbol "hint_decl" = "hint_decl_Type2". +unification hint 0 ≔ A; + R ≟ (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) +(*--------------------------------------------------*)⊢ + carr1 R ≡ Ω^A. (************ SETS OVER SETOIDS ********************) include "logic/cprop.ma". -nrecord qpowerclass (A: setoid) : Type[1] ≝ - { pc:> Ω \sup A; - mem_ok': ∀x,x':A. x=x' → (x ∈ pc) = (x' ∈ pc) - }. +nrecord ext_powerclass (A: setoid) : Type[1] ≝ { + ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso... + forse lo si vorrebbe dichiarato con un target più lasco + ma la sintassi :> non lo supporta *) + ext_prop: ∀x,x':A. x=x' → (x ∈ ext_carr) = (x' ∈ ext_carr) +}. + +notation > "𝛀 ^ term 90 A" non associative with precedence 70 +for @{ 'ext_powerclass $A }. + +notation < "Ω term 90 A \atop ≈" non associative with precedence 90 +for @{ 'ext_powerclass $A }. + +interpretation "extensional powerclass" 'ext_powerclass a = (ext_powerclass a). + +ndefinition Full_set: ∀A. 𝛀^A. + #A; @[ napply A | #x; #x'; #H; napply refl1] +nqed. +ncoercion Full_set: ∀A. ext_powerclass A ≝ Full_set on A: setoid to ext_powerclass ?. + +ndefinition ext_seteq: ∀A. equivalence_relation1 (𝛀^A). + #A; @ [ napply (λS,S'. S = S') ] /2/. +nqed. + +ndefinition ext_powerclass_setoid: setoid → setoid1. + #A; @ (ext_seteq A). +nqed. + +unification hint 0 ≔ A; + R ≟ (mk_setoid1 (𝛀^A) (eq1 (ext_powerclass_setoid A))) + (* ----------------------------------------------------- *) ⊢ + carr1 R ≡ ext_powerclass A. + +nlemma mem_ext_powerclass_setoid_is_morph: + ∀A. (setoid1_of_setoid A) ⇒_1 ((𝛀^A) ⇒_1 CPROP). +#A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S)); +#a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H +[ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/. +nqed. + +unification hint 0 ≔ AA : setoid, S : 𝛀^AA, x : carr AA; + A ≟ carr AA, + SS ≟ (ext_carr ? S), + TT ≟ (mk_unary_morphism1 ?? + (λx:carr1 (setoid1_of_setoid ?). + mk_unary_morphism1 ?? + (λS:carr1 (ext_powerclass_setoid ?). x ∈ (ext_carr ? S)) + (prop11 ?? (fun11 ?? (mem_ext_powerclass_setoid_is_morph AA) x))) + (prop11 ?? (mem_ext_powerclass_setoid_is_morph AA))), + T2 ≟ (ext_powerclass_setoid AA) +(*---------------------------------------------------------------------------*) ⊢ + fun11 T2 CPROP (fun11 (setoid1_of_setoid AA) (unary_morphism1_setoid1 T2 CPROP) TT x) S ≡ mem A SS x. + +nlemma set_ext : ∀S.∀A,B:Ω^S.A =_1 B → ∀x:S.(x ∈ A) =_1 (x ∈ B). +#S A B; *; #H1 H2 x; @; ##[ napply H1 | napply H2] nqed. + +nlemma ext_set : ∀S.∀A,B:Ω^S.(∀x:S. (x ∈ A) = (x ∈ B)) → A = B. +#S A B H; @; #x; ncases (H x); #H1 H2; ##[ napply H1 | napply H2] nqed. + +nlemma subseteq_is_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 CPROP. + #A; napply (mk_binary_morphism1 … (λS,S':𝛀^A. S ⊆ S')); + #a; #a'; #b; #b'; *; #H1; #H2; *; /5/ by mk_iff, sym1, subseteq_trans; +nqed. + +(* hints for ∩ *) +nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. +#S A B; @ (A ∩ B); #x y Exy; @; *; #H1 H2; @; +##[##1,2: napply (. Exy^-1╪_1#); nassumption; +##|##3,4: napply (. Exy‡#); nassumption] +nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, B,C : 𝛀^A; + AA ≟ carr A, + BB ≟ ext_carr ? B, + CC ≟ ext_carr ? C, + R ≟ (mk_ext_powerclass ? + (ext_carr ? B ∩ ext_carr ? C) + (ext_prop ? (intersect_is_ext ? B C))) + (* ------------------------------------------*) ⊢ + ext_carr A R ≡ intersect AA BB CC. + +nlemma intersect_is_morph: ∀A. Ω^A ⇒_1 Ω^A ⇒_1 Ω^A. +#A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S')); +#a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/. +nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : Type[0], B,C : Ω^A; + T ≟ powerclass_setoid A, + R ≟ mk_unary_morphism1 ?? + (λX. mk_unary_morphism1 ?? + (λY.X ∩ Y) (prop11 ?? (fun11 ?? (intersect_is_morph A) X))) + (prop11 ?? (intersect_is_morph A)) +(*------------------------------------------------------------------------*) ⊢ + fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C ≡ intersect A B C. + +interpretation "prop21 ext" 'prop2 l r = + (prop11 (ext_powerclass_setoid ?) + (unary_morphism1_setoid1 (ext_powerclass_setoid ?) ?) ? ?? l ?? r). + +nlemma intersect_is_ext_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. + #A; napply (mk_binary_morphism1 … (intersect_is_ext …)); + #a; #a'; #b; #b'; #Ha; #Hb; napply (prop11 … (intersect_is_morph A)); nassumption. +nqed. + +unification hint 1 ≔ + AA : setoid, B,C : 𝛀^AA; + A ≟ carr AA, + T ≟ ext_powerclass_setoid AA, + R ≟ (mk_unary_morphism1 ?? (λX:𝛀^AA. + mk_unary_morphism1 ?? (λY:𝛀^AA. + mk_ext_powerclass AA + (ext_carr ? X ∩ ext_carr ? Y) + (ext_prop AA (intersect_is_ext ? X Y))) + (prop11 ?? (fun11 ?? (intersect_is_ext_morph AA) X))) + (prop11 ?? (intersect_is_ext_morph AA))) , + BB ≟ (ext_carr ? B), + CC ≟ (ext_carr ? C) + (* ---------------------------------------------------------------------------------------*) ⊢ + ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ intersect A BB CC. + + +(* hints for ∪ *) +nlemma union_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). +#X; napply (mk_binary_morphism1 … (λA,B.A ∪ B)); +#A1 A2 B1 B2 EA EB; napply ext_set; #x; +nchange in match (x ∈ (A1 ∪ B1)) with (?∨?); +napply (.= (set_ext ??? EA x)‡#); +napply (.= #‡(set_ext ??? EB x)); //; +nqed. + +nlemma union_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. + #S A B; @ (A ∪ B); #x y Exy; @; *; #H1; +##[##1,3: @; ##|##*: @2 ] +##[##1,3: napply (. (Exy^-1)╪_1#) +##|##2,4: napply (. Exy╪_1#)] +nassumption; +nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, B,C : 𝛀^A; + AA ≟ carr A, + BB ≟ ext_carr ? B, + CC ≟ ext_carr ? C, + R ≟ mk_ext_powerclass ? + (ext_carr ? B ∪ ext_carr ? C) (ext_prop ? (union_is_ext ? B C)) +(*-------------------------------------------------------------------------*) ⊢ + ext_carr A R ≡ union AA BB CC. + +unification hint 0 ≔ S:Type[0], A,B:Ω^S; + T ≟ powerclass_setoid S, + MM ≟ mk_unary_morphism1 ?? + (λA.mk_unary_morphism1 ?? + (λB.A ∪ B) (prop11 ?? (fun11 ?? (union_is_morph S) A))) + (prop11 ?? (union_is_morph S)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A ∪ B. + +nlemma union_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. +#A; napply (mk_binary_morphism1 … (union_is_ext …)); +#x1 x2 y1 y2 Ex Ey; napply (prop11 … (union_is_morph A)); nassumption. +nqed. + +unification hint 1 ≔ + AA : setoid, B,C : 𝛀^AA; + A ≟ carr AA, + T ≟ ext_powerclass_setoid AA, + R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA. + mk_unary_morphism1 ?? (λY:𝛀^AA. + mk_ext_powerclass AA + (ext_carr ? X ∪ ext_carr ? Y) (ext_prop AA (union_is_ext ? X Y))) + (prop11 ?? (fun11 ?? (union_is_ext_morph AA) X))) + (prop11 ?? (union_is_ext_morph AA)), + BB ≟ (ext_carr ? B), + CC ≟ (ext_carr ? C) +(*------------------------------------------------------*) ⊢ + ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ union A BB CC. + + +(* hints for - *) +nlemma substract_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). +#X; napply (mk_binary_morphism1 … (λA,B.A - B)); +#A1 A2 B1 B2 EA EB; napply ext_set; #x; +nchange in match (x ∈ (A1 - B1)) with (?∧?); +napply (.= (set_ext ??? EA x)‡#); @; *; #H H1; @; //; #H2; napply H1; +##[ napply (. (set_ext ??? EB x)); ##| napply (. (set_ext ??? EB^-1 x)); ##] //; +nqed. + +nlemma substract_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. + #S A B; @ (A - B); #x y Exy; @; *; #H1 H2; @; ##[##2,4: #H3; napply H2] +##[##1,4: napply (. Exy╪_1#); // ##|##2,3: napply (. Exy^-1╪_1#); //] +nqed. -ndefinition qseteq: ∀A. equivalence_relation1 (qpowerclass A). - #A; napply mk_equivalence_relation1 - [ napply (λS,S':qpowerclass A. eq_rel1 ? (eq1 (powerclass_setoid A)) S S') - | #S; napply (refl1 ? (seteq A)) - | #S; #S'; napply (sym1 ? (seteq A)) - | #S; #T; #U; napply (trans1 ? (seteq A))] -nqed. - -ndefinition qpowerclass_setoid: setoid → setoid1. - #A; napply mk_setoid1 - [ napply (qpowerclass A) - | napply (qseteq A) ] -nqed. - -unification hint 0 (∀A. (λx,y.True) (carr1 (qpowerclass_setoid A)) (qpowerclass A)). -ncoercion qpowerclass_hint: ∀A: setoid. ∀S: qpowerclass_setoid A. Ω \sup A ≝ λA.λS.S - on _S: (carr1 (qpowerclass_setoid ?)) to (Ω \sup ?). - -nlemma mem_ok: ∀A. binary_morphism1 (setoid1_of_setoid A) (qpowerclass_setoid A) CPROP. - #A; napply mk_binary_morphism1 - [ napply (λx.λS: qpowerclass_setoid A. x ∈ S) (* CSC: ??? *) - | #a; #a'; #b; #b'; #Ha; #Hb; (* CSC: qui *; non funziona *) - nwhd; nwhd in ⊢ (? (? % ??) (? % ??)); napply mk_iff; #H - [ ncases Hb; #Hb1; #_; napply Hb1; napply (. (mem_ok' …)) - [ nassumption | napply Ha^-1 | ##skip ] - ##| ncases Hb; #_; #Hb2; napply Hb2; napply (. (mem_ok' …)) - [ nassumption | napply Ha | ##skip ]##] -nqed. - -unification hint 0 (∀A,x,S. (λx,y.True) (fun21 ??? (mem_ok A) x S) (mem A S x)). - -nlemma subseteq_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) CPROP. - #A; napply mk_binary_morphism1 - [ napply (λS,S': qpowerclass_setoid ?. S ⊆ S') - | #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; napply mk_iff; #H - [ napply (subseteq_trans … a' a) (* anche qui, perche' serve a'? *) - [ nassumption | napply (subseteq_trans … a b); nassumption ] - ##| napply (subseteq_trans … a a') (* anche qui, perche' serve a'? *) - [ nassumption | napply (subseteq_trans … a' b'); nassumption ] ##] -nqed. - -nlemma intersect_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) (qpowerclass_setoid A). - #A; napply mk_binary_morphism1 - [ #S; #S'; napply mk_qpowerclass +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, B,C : 𝛀^A; + AA ≟ carr A, + BB ≟ ext_carr ? B, + CC ≟ ext_carr ? C, + R ≟ mk_ext_powerclass ? + (ext_carr ? B - ext_carr ? C) + (ext_prop ? (substract_is_ext ? B C)) +(*---------------------------------------------------*) ⊢ + ext_carr A R ≡ substract AA BB CC. + +unification hint 0 ≔ S:Type[0], A,B:Ω^S; + T ≟ powerclass_setoid S, + MM ≟ mk_unary_morphism1 ?? + (λA.mk_unary_morphism1 ?? + (λB.A - B) (prop11 ?? (fun11 ?? (substract_is_morph S) A))) + (prop11 ?? (substract_is_morph S)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A - B. + +nlemma substract_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. +#A; napply (mk_binary_morphism1 … (substract_is_ext …)); +#x1 x2 y1 y2 Ex Ey; napply (prop11 … (substract_is_morph A)); nassumption. +nqed. + +unification hint 1 ≔ + AA : setoid, B,C : 𝛀^AA; + A ≟ carr AA, + T ≟ ext_powerclass_setoid AA, + R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA. + mk_unary_morphism1 ?? (λY:𝛀^AA. + mk_ext_powerclass AA + (ext_carr ? X - ext_carr ? Y) + (ext_prop AA (substract_is_ext ? X Y))) + (prop11 ?? (fun11 ?? (substract_is_ext_morph AA) X))) + (prop11 ?? (substract_is_ext_morph AA)), + BB ≟ (ext_carr ? B), + CC ≟ (ext_carr ? C) +(*------------------------------------------------------*) ⊢ + ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ substract A BB CC. + +(* hints for {x} *) +nlemma single_is_morph : ∀A:setoid. (setoid1_of_setoid A) ⇒_1 Ω^A. +#X; @; ##[ napply (λx.{(x)}); ##] +#a b E; napply ext_set; #x; @; #H; /3/; nqed. + +nlemma single_is_ext: ∀A:setoid. A → 𝛀^A. +#X a; @; ##[ napply ({(a)}); ##] #x y E; @; #H; /3/; nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, a : carr A; + R ≟ (mk_ext_powerclass ? {(a)} (ext_prop ? (single_is_ext ? a))) +(*-------------------------------------------------------------------------*) ⊢ + ext_carr A R ≡ singleton A a. + +unification hint 0 ≔ A:setoid, a : carr A; + T ≟ setoid1_of_setoid A, + AA ≟ carr A, + MM ≟ mk_unary_morphism1 ?? + (λa:carr1 (setoid1_of_setoid A).{(a)}) (prop11 ?? (single_is_morph A)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 T (powerclass_setoid AA) MM a ≡ {(a)}. + +nlemma single_is_ext_morph:∀A:setoid.(setoid1_of_setoid A) ⇒_1 𝛀^A. +#A; @; ##[ #a; napply (single_is_ext ? a); ##] #a b E; @; #x; /3/; nqed. + +unification hint 1 ≔ AA : setoid, a: carr AA; + T ≟ ext_powerclass_setoid AA, + R ≟ mk_unary_morphism1 ?? + (λa:carr1 (setoid1_of_setoid AA). + mk_ext_powerclass AA {(a)} (ext_prop ? (single_is_ext AA a))) + (prop11 ?? (single_is_ext_morph AA)) +(*------------------------------------------------------*) ⊢ + ext_carr AA (fun11 (setoid1_of_setoid AA) T R a) ≡ singleton AA a. + + +(* +alias symbol "hint_decl" = "hint_decl_Type2". +unification hint 0 ≔ + A : setoid, B,C : 𝛀^A ; + CC ≟ (ext_carr ? C), + BB ≟ (ext_carr ? B), + C1 ≟ (carr1 (powerclass_setoid (carr A))), + C2 ≟ (carr1 (ext_powerclass_setoid A)) + ⊢ + eq_rel1 C1 (eq1 (powerclass_setoid (carr A))) BB CC ≡ + eq_rel1 C2 (eq1 (ext_powerclass_setoid A)) B C. + +unification hint 0 ≔ + A, B : CPROP ⊢ iff A B ≡ eq_rel1 ? (eq1 CPROP) A B. + +nlemma test: ∀U.∀A,B:𝛀^U. A ∩ B = A → + ∀x,y. x=y → x ∈ A → y ∈ A ∩ B. + #U; #A; #B; #H; #x; #y; #K; #K2; + alias symbol "prop2" = "prop21 mem". + alias symbol "invert" = "setoid1 symmetry". + napply (. K^-1‡H); + nassumption; +nqed. + + +nlemma intersect_ok: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A). + #A; @ + [ #S; #S'; @ [ napply (S ∩ S') - | #a; #a'; #Ha; nwhd in ⊢ (? ? ? % %); napply mk_iff; *; #H1; #H2; napply conj - [##1,2: napply (. (mem_ok' …)^-1) [##3,6: nassumption |##1,4: nassumption |##*: ##skip] - ##|##3,4: napply (. (mem_ok' …)) [##2,5: nassumption |##1,4: nassumption |##*: ##skip]##]##] - ##| #a; #a'; #b; #b'; #Ha; #Hb; nwhd; napply conj; #x; nwhd in ⊢ (% → %); #H - [ napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption + | #a; #a'; #Ha; + nwhd in ⊢ (? ? ? % %); @; *; #H1; #H2; @ + [##1,2: napply (. Ha^-1‡#); nassumption; + ##|##3,4: napply (. Ha‡#); nassumption]##] + ##| #a; #a'; #b; #b'; #Ha; #Hb; nwhd; @; #x; nwhd in ⊢ (% → %); #H + [ alias symbol "invert" = "setoid1 symmetry". + alias symbol "refl" = "refl". +alias symbol "prop2" = "prop21". +napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption | napply (. ((#‡Ha)‡(#‡Hb))); nassumption ]##] nqed. -unification hint 0 (∀A.∀U,V.(λx,y.True) (fun21 ??? (intersect_ok A) U V) (intersect A U V)). +(* unfold if intersect, exposing fun21 *) +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ + A : setoid, B,C : ext_powerclass A ⊢ + pc A (fun21 … + (mk_binary_morphism1 … + (λS,S':qpowerclass_setoid A.mk_qpowerclass ? (S ∩ S') (mem_ok' ? (intersect_ok ? S S'))) + (prop21 … (intersect_ok A))) + B + C) + ≡ intersect ? (pc ? B) (pc ? C). nlemma test: ∀A:setoid. ∀U,V:qpowerclass A. ∀x,x':setoid1_of_setoid A. x=x' → x ∈ U ∩ V → x' ∈ U ∩ V. - #A; #U; #V; #x; #x'; #H; #p; - (* CSC: senza la change non funziona! *) - nchange with (x' ∈ (fun21 ??? (intersect_ok A) U V)); - napply (. (H^-1‡#)); nassumption. + #A; #U; #V; #x; #x'; #H; #p; napply (. (H^-1‡#)); nassumption. nqed. +*) -(* -(* qui non funziona una cippa *) -ndefinition image: ∀A,B. (carr A → carr B) → Ω \sup A → Ω \sup B ≝ - λA,B:setoid.λf:carr A → carr B.λSa:Ω \sup A. - {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq B) ? ?(*(f x) y*)}. - ##[##2: napply (f x); ##|##3: napply y] - #a; #a'; #H; nwhd; nnormalize; (* per togliere setoid1_of_setoid *) napply (mk_iff ????); - *; #x; #Hx; napply (ex_intro … x) - [ napply (. (#‡(#‡#))); - -ndefinition counter_image: ∀A,B. (A → B) → Ω \sup B → Ω \sup A ≝ +ndefinition image: ∀A,B. (carr A → carr B) → Ω^A → Ω^B ≝ + λA,B:setoid.λf:carr A → carr B.λSa:Ω^A. + {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq0 B) (f x) y}. + +ndefinition counter_image: ∀A,B. (carr A → carr B) → Ω^B → Ω^A ≝ λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}. + +(******************* compatible equivalence relations **********************) + +nrecord compatible_equivalence_relation (A: setoid) : Type[1] ≝ + { rel:> equivalence_relation A; + compatibility: ∀x,x':A. x=x' → rel x x' + }. + +ndefinition quotient: ∀A. compatible_equivalence_relation A → setoid. + #A; #R; @ A R; +nqed. + +(******************* first omomorphism theorem for sets **********************) + +ndefinition eqrel_of_morphism: + ∀A,B. A ⇒_0 B → compatible_equivalence_relation A. + #A; #B; #f; @ + [ @ [ napply (λx,y. f x = f y) ] /2/; +##| #x; #x'; #H; nwhd; alias symbol "prop1" = "prop1". +napply (.= (†H)); // ] +nqed. + +ndefinition canonical_proj: ∀A,R. A ⇒_0 (quotient A R). + #A; #R; @ + [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ] +nqed. + +ndefinition quotiented_mor: + ∀A,B.∀f:A ⇒_0 B.(quotient … (eqrel_of_morphism … f)) ⇒_0 B. + #A; #B; #f; @ [ napply f ] //. +nqed. + +nlemma first_omomorphism_theorem_functions1: + ∀A,B.∀f: unary_morphism A B. + ∀x. f x = quotiented_mor … (canonical_proj … (eqrel_of_morphism … f) x). +//. nqed. + +alias symbol "eq" = "setoid eq". +ndefinition surjective ≝ + λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:A ⇒_0 B. + ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y. + +ndefinition injective ≝ + λA,B.λS: ext_powerclass A.λf:A ⇒_0 B. + ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'. + +nlemma first_omomorphism_theorem_functions2: + ∀A,B.∀f:A ⇒_0 B. + surjective … (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism … f)). +/3/. nqed. + +nlemma first_omomorphism_theorem_functions3: + ∀A,B.∀f:A ⇒_0 B. + injective … (Full_set ?) (quotiented_mor … f). + #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption. +nqed. + +nrecord isomorphism (A, B : setoid) (S: ext_powerclass A) (T: ext_powerclass B) : Type[0] ≝ + { iso_f:> A ⇒_0 B; + f_closed: ∀x. x ∈ S → iso_f x ∈ T; + f_sur: surjective … S T iso_f; + f_inj: injective … S iso_f + }. + + +(* +nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝ + { iso_f:> unary_morphism A B; + f_closed: ∀x. x ∈ pc A S → fun1 ?? iso_f x ∈ pc B T}. + + +ncheck (λA:?. + λB:?. + λS:?. + λT:?. + λxxx:isomorphism A B S T. + match xxx + return λxxx:isomorphism A B S T. + ∀x: carr A. + ∀x_72: mem (carr A) (pc A S) x. + mem (carr B) (pc B T) (fun1 A B ((λ_.?) A B S T xxx) x) + with [ mk_isomorphism _ yyy ⇒ yyy ] ). + + ; + }. *) + +(* Set theory *) + +nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W. +#A; #U; #V; #W; *; #H; #x; *; /2/. +nqed. + +nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W. +#A; #U; #V; #W; #H; #H1; #x; *; /2/. +nqed. + +nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V. +/3/. nqed. + +nlemma cupC : ∀S. ∀a,b:Ω^S.a ∪ b = b ∪ a. +#S a b; @; #w; *; nnormalize; /2/; nqed. + +nlemma cupID : ∀S. ∀a:Ω^S.a ∪ a = a. +#S a; @; #w; ##[*; //] /2/; nqed. + +(* XXX Bug notazione \cup, niente parentesi *) +nlemma cupA : ∀S.∀a,b,c:Ω^S.a ∪ b ∪ c = a ∪ (b ∪ c). +#S a b c; @; #w; *; /3/; *; /3/; nqed. + +ndefinition Empty_set : ∀A.Ω^A ≝ λA.{ x | False }. + +notation "∅" non associative with precedence 90 for @{ 'empty }. +interpretation "empty set" 'empty = (Empty_set ?). + +nlemma cup0 :∀S.∀A:Ω^S.A ∪ ∅ = A. +#S p; @; #w; ##[*; //| #; @1; //] *; nqed. +