X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsets.ma;h=c8f303a6b407920f101126160a4b6d6333d9acfc;hb=e880d6eab5e1700f4a625ddcd7d0fa8f0cce2dcc;hp=9fd5b7eeb77c78d77de0fb5b220f42e93f84779d;hpb=4efe53bc2098939c255d5b03941212549f89a1bd;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index 9fd5b7eeb..c8f303a6b 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -34,6 +34,10 @@ interpretation "intersect" 'intersects U V = (intersect ? U V). ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }. interpretation "union" 'union U V = (union ? U V). +ndefinition substract ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ ¬ x ∈ V }. +interpretation "substract" 'minus U V = (substract ? U V). + + ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }. ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }. @@ -49,15 +53,15 @@ nlemma subseteq_trans: ∀A.∀S,T,U: Ω^A. S ⊆ T → T ⊆ U → S ⊆ U. include "properties/relations1.ma". ndefinition seteq: ∀A. equivalence_relation1 (Ω^A). - #A; @ - [ napply (λS,S'. S ⊆ S' ∧ S' ⊆ S) - | /2/ - | #S; #S'; *; /3/ - | #S; #T; #U; *; #H1; #H2; *; /4/] +#A; @(λS,S'. S ⊆ S' ∧ S' ⊆ S); /2/; ##[ #A B; *; /3/] +#S T U; *; #H1 H2; *; /4/; nqed. include "sets/setoids1.ma". +ndefinition singleton ≝ λA:setoid.λa:A.{ x | a = x }. +interpretation "singl" 'singl a = (singleton ? a). + (* this has to be declared here, so that it is combined with carr *) ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?). @@ -65,21 +69,22 @@ ndefinition powerclass_setoid: Type[0] → setoid1. #A; @(Ω^A);//. nqed. -include "hints_declaration.ma". - alias symbol "hint_decl" = "hint_decl_Type2". -unification hint 0 ≔ A ⊢ carr1 (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) ≡ Ω^A. +unification hint 0 ≔ A; + R ≟ (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) +(*--------------------------------------------------*)⊢ + carr1 R ≡ Ω^A. (************ SETS OVER SETOIDS ********************) include "logic/cprop.ma". -nrecord ext_powerclass (A: setoid) : Type[1] ≝ - { ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso... - forse lo si vorrebbe dichiarato con un target più lasco - ma la sintassi :> non lo supporta *) +nrecord ext_powerclass (A: setoid) : Type[1] ≝ { + ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso... + forse lo si vorrebbe dichiarato con un target più lasco + ma la sintassi :> non lo supporta *) ext_prop: ∀x,x':A. x=x' → (x ∈ ext_carr) = (x' ∈ ext_carr) - }. +}. notation > "𝛀 ^ term 90 A" non associative with precedence 70 for @{ 'ext_powerclass $A }. @@ -107,100 +112,242 @@ unification hint 0 ≔ A; (* ----------------------------------------------------- *) ⊢ carr1 R ≡ ext_powerclass A. -(* -interpretation "prop21 mem" 'prop2 l r = (prop21 (setoid1_of_setoid ?) (ext_powerclass_setoid ?) ? ? ???? l r). -*) - -(* -ncoercion ext_carr' : ∀A.∀x:ext_powerclass_setoid A. Ω^A ≝ ext_carr -on _x : (carr1 (ext_powerclass_setoid ?)) to (Ω^?). -*) - nlemma mem_ext_powerclass_setoid_is_morph: - ∀A. unary_morphism1 (setoid1_of_setoid A) (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP). - #A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S)); - #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H - [ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/. + ∀A. (setoid1_of_setoid A) ⇒_1 ((𝛀^A) ⇒_1 CPROP). +#A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S)); +#a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H +[ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/. nqed. -unification hint 0 ≔ A:setoid, x, S; +unification hint 0 ≔ AA : setoid, S : 𝛀^AA, x : carr AA; + A ≟ carr AA, SS ≟ (ext_carr ? S), - TT ≟ (mk_unary_morphism1 … - (λx:setoid1_of_setoid ?. - mk_unary_morphism1 … - (λS:ext_powerclass_setoid ?. x ∈ S) - (prop11 … (mem_ext_powerclass_setoid_is_morph A x))) - (prop11 … (mem_ext_powerclass_setoid_is_morph A))), - XX ≟ (ext_powerclass_setoid A) - (*-------------------------------------*) ⊢ - fun11 (setoid1_of_setoid A) - (unary_morphism1_setoid1 XX CPROP) TT x S - ≡ mem A SS x. - -nlemma subseteq_is_morph: ∀A. unary_morphism1 (ext_powerclass_setoid A) - (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP). + TT ≟ (mk_unary_morphism1 ?? + (λx:carr1 (setoid1_of_setoid ?). + mk_unary_morphism1 ?? + (λS:carr1 (ext_powerclass_setoid ?). x ∈ (ext_carr ? S)) + (prop11 ?? (fun11 ?? (mem_ext_powerclass_setoid_is_morph AA) x))) + (prop11 ?? (mem_ext_powerclass_setoid_is_morph AA))), + T2 ≟ (ext_powerclass_setoid AA) +(*---------------------------------------------------------------------------*) ⊢ + fun11 T2 CPROP (fun11 (setoid1_of_setoid AA) (unary_morphism1_setoid1 T2 CPROP) TT x) S ≡ mem A SS x. + +nlemma set_ext : ∀S.∀A,B:Ω^S.A =_1 B → ∀x:S.(x ∈ A) =_1 (x ∈ B). +#S A B; *; #H1 H2 x; @; ##[ napply H1 | napply H2] nqed. + +nlemma ext_set : ∀S.∀A,B:Ω^S.(∀x:S. (x ∈ A) = (x ∈ B)) → A = B. +#S A B H; @; #x; ncases (H x); #H1 H2; ##[ napply H1 | napply H2] nqed. + +nlemma subseteq_is_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 CPROP. #A; napply (mk_binary_morphism1 … (λS,S':𝛀^A. S ⊆ S')); #a; #a'; #b; #b'; *; #H1; #H2; *; /5/ by mk_iff, sym1, subseteq_trans; nqed. -unification hint 0 ≔ A,a,a' - (*-----------------------------------------------------------------*) ⊢ - eq_rel ? (eq0 A) a a' ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) a a'. - +(* hints for ∩ *) nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. - #A; #S; #S'; @ (S ∩ S'); - #a; #a'; #Ha; @; *; #H1; #H2; @ - [##1,2: napply (. Ha^-1‡#); nassumption; -##|##3,4: napply (. Ha‡#); nassumption] +#S A B; @ (A ∩ B); #x y Exy; @; *; #H1 H2; @; +##[##1,2: napply (. Exy^-1╪_1#); nassumption; +##|##3,4: napply (. Exy‡#); nassumption] nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ - A : setoid, B,C : ext_powerclass A; - R ≟ (mk_ext_powerclass ? (B ∩ C) (ext_prop ? (intersect_is_ext ? B C))) - +unification hint 0 ≔ A : setoid, B,C : 𝛀^A; + AA ≟ carr A, + BB ≟ ext_carr ? B, + CC ≟ ext_carr ? C, + R ≟ (mk_ext_powerclass ? + (ext_carr ? B ∩ ext_carr ? C) + (ext_prop ? (intersect_is_ext ? B C))) (* ------------------------------------------*) ⊢ - ext_carr A R ≡ intersect ? (ext_carr ? B) (ext_carr ? C). - -nlemma intersect_is_morph: - ∀A. unary_morphism1 (powerclass_setoid A) (unary_morphism1_setoid1 (powerclass_setoid A) (powerclass_setoid A)). - #A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S')); - #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/. + ext_carr A R ≡ intersect AA BB CC. + +nlemma intersect_is_morph: ∀A. Ω^A ⇒_1 Ω^A ⇒_1 Ω^A. +#A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S')); +#a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/. nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 0 ≔ - A : Type[0], B,C : Ω^A; - R ≟ (mk_unary_morphism1 … - (λS. mk_unary_morphism1 … (λS'.S ∩ S') (prop11 … (intersect_is_morph A S))) - (prop11 … (intersect_is_morph A))) - ⊢ - R B C ≡ intersect ? B C. +unification hint 0 ≔ A : Type[0], B,C : Ω^A; + T ≟ powerclass_setoid A, + R ≟ mk_unary_morphism1 ?? + (λX. mk_unary_morphism1 ?? + (λY.X ∩ Y) (prop11 ?? (fun11 ?? (intersect_is_morph A) X))) + (prop11 ?? (intersect_is_morph A)) +(*------------------------------------------------------------------------*) ⊢ + fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C ≡ intersect A B C. interpretation "prop21 ext" 'prop2 l r = (prop11 (ext_powerclass_setoid ?) (unary_morphism1_setoid1 (ext_powerclass_setoid ?) ?) ? ?? l ?? r). -nlemma intersect_is_ext_morph: - ∀A. unary_morphism1 (ext_powerclass_setoid A) - (unary_morphism1_setoid1 (ext_powerclass_setoid A) (ext_powerclass_setoid A)). +nlemma intersect_is_ext_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. #A; napply (mk_binary_morphism1 … (intersect_is_ext …)); #a; #a'; #b; #b'; #Ha; #Hb; napply (prop11 … (intersect_is_morph A)); nassumption. nqed. unification hint 1 ≔ - A:setoid, B,C : 𝛀^A; - R ≟ (mk_unary_morphism1 … - (λS:ext_powerclass_setoid A. - mk_unary_morphism1 ?? - (λS':ext_powerclass_setoid A. - mk_ext_powerclass A (S∩S') (ext_prop A (intersect_is_ext ? S S'))) - (prop11 … (intersect_is_ext_morph A S))) - (prop11 … (intersect_is_ext_morph A))) , + AA : setoid, B,C : 𝛀^AA; + A ≟ carr AA, + T ≟ ext_powerclass_setoid AA, + R ≟ (mk_unary_morphism1 ?? (λX:𝛀^AA. + mk_unary_morphism1 ?? (λY:𝛀^AA. + mk_ext_powerclass AA + (ext_carr ? X ∩ ext_carr ? Y) + (ext_prop AA (intersect_is_ext ? X Y))) + (prop11 ?? (fun11 ?? (intersect_is_ext_morph AA) X))) + (prop11 ?? (intersect_is_ext_morph AA))) , BB ≟ (ext_carr ? B), CC ≟ (ext_carr ? C) - (* ------------------------------------------------------*) ⊢ - ext_carr A (R B C) ≡ intersect (carr A) BB CC. + (* ---------------------------------------------------------------------------------------*) ⊢ + ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ intersect A BB CC. + + +(* hints for ∪ *) +nlemma union_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). +#X; napply (mk_binary_morphism1 … (λA,B.A ∪ B)); +#A1 A2 B1 B2 EA EB; napply ext_set; #x; +nchange in match (x ∈ (A1 ∪ B1)) with (?∨?); +napply (.= (set_ext ??? EA x)‡#); +napply (.= #‡(set_ext ??? EB x)); //; +nqed. + +nlemma union_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. + #S A B; @ (A ∪ B); #x y Exy; @; *; #H1; +##[##1,3: @; ##|##*: @2 ] +##[##1,3: napply (. (Exy^-1)╪_1#) +##|##2,4: napply (. Exy╪_1#)] +nassumption; +nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, B,C : 𝛀^A; + AA ≟ carr A, + BB ≟ ext_carr ? B, + CC ≟ ext_carr ? C, + R ≟ mk_ext_powerclass ? + (ext_carr ? B ∪ ext_carr ? C) (ext_prop ? (union_is_ext ? B C)) +(*-------------------------------------------------------------------------*) ⊢ + ext_carr A R ≡ union AA BB CC. + +unification hint 0 ≔ S:Type[0], A,B:Ω^S; + T ≟ powerclass_setoid S, + MM ≟ mk_unary_morphism1 ?? + (λA.mk_unary_morphism1 ?? + (λB.A ∪ B) (prop11 ?? (fun11 ?? (union_is_morph S) A))) + (prop11 ?? (union_is_morph S)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A ∪ B. + +nlemma union_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. +#A; napply (mk_binary_morphism1 … (union_is_ext …)); +#x1 x2 y1 y2 Ex Ey; napply (prop11 … (union_is_morph A)); nassumption. +nqed. + +unification hint 1 ≔ + AA : setoid, B,C : 𝛀^AA; + A ≟ carr AA, + T ≟ ext_powerclass_setoid AA, + R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA. + mk_unary_morphism1 ?? (λY:𝛀^AA. + mk_ext_powerclass AA + (ext_carr ? X ∪ ext_carr ? Y) (ext_prop AA (union_is_ext ? X Y))) + (prop11 ?? (fun11 ?? (union_is_ext_morph AA) X))) + (prop11 ?? (union_is_ext_morph AA)), + BB ≟ (ext_carr ? B), + CC ≟ (ext_carr ? C) +(*------------------------------------------------------*) ⊢ + ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ union A BB CC. + + +(* hints for - *) +nlemma substract_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). +#X; napply (mk_binary_morphism1 … (λA,B.A - B)); +#A1 A2 B1 B2 EA EB; napply ext_set; #x; +nchange in match (x ∈ (A1 - B1)) with (?∧?); +napply (.= (set_ext ??? EA x)‡#); @; *; #H H1; @; //; #H2; napply H1; +##[ napply (. (set_ext ??? EB x)); ##| napply (. (set_ext ??? EB^-1 x)); ##] //; +nqed. + +nlemma substract_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. + #S A B; @ (A - B); #x y Exy; @; *; #H1 H2; @; ##[##2,4: #H3; napply H2] +##[##1,4: napply (. Exy╪_1#); // ##|##2,3: napply (. Exy^-1╪_1#); //] +nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, B,C : 𝛀^A; + AA ≟ carr A, + BB ≟ ext_carr ? B, + CC ≟ ext_carr ? C, + R ≟ mk_ext_powerclass ? + (ext_carr ? B - ext_carr ? C) + (ext_prop ? (substract_is_ext ? B C)) +(*---------------------------------------------------*) ⊢ + ext_carr A R ≡ substract AA BB CC. + +unification hint 0 ≔ S:Type[0], A,B:Ω^S; + T ≟ powerclass_setoid S, + MM ≟ mk_unary_morphism1 ?? + (λA.mk_unary_morphism1 ?? + (λB.A - B) (prop11 ?? (fun11 ?? (substract_is_morph S) A))) + (prop11 ?? (substract_is_morph S)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 T T (fun11 T (unary_morphism1_setoid1 T T) MM A) B ≡ A - B. + +nlemma substract_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. +#A; napply (mk_binary_morphism1 … (substract_is_ext …)); +#x1 x2 y1 y2 Ex Ey; napply (prop11 … (substract_is_morph A)); nassumption. +nqed. + +unification hint 1 ≔ + AA : setoid, B,C : 𝛀^AA; + A ≟ carr AA, + T ≟ ext_powerclass_setoid AA, + R ≟ mk_unary_morphism1 ?? (λX:𝛀^AA. + mk_unary_morphism1 ?? (λY:𝛀^AA. + mk_ext_powerclass AA + (ext_carr ? X - ext_carr ? Y) + (ext_prop AA (substract_is_ext ? X Y))) + (prop11 ?? (fun11 ?? (substract_is_ext_morph AA) X))) + (prop11 ?? (substract_is_ext_morph AA)), + BB ≟ (ext_carr ? B), + CC ≟ (ext_carr ? C) +(*------------------------------------------------------*) ⊢ + ext_carr AA (fun11 T T (fun11 T (unary_morphism1_setoid1 T T) R B) C) ≡ substract A BB CC. + +(* hints for {x} *) +nlemma single_is_morph : ∀A:setoid. (setoid1_of_setoid A) ⇒_1 Ω^A. +#X; @; ##[ napply (λx.{(x)}); ##] +#a b E; napply ext_set; #x; @; #H; /3/; nqed. + +nlemma single_is_ext: ∀A:setoid. A → 𝛀^A. +#X a; @; ##[ napply ({(a)}); ##] #x y E; @; #H; /3/; nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, a : carr A; + R ≟ (mk_ext_powerclass ? {(a)} (ext_prop ? (single_is_ext ? a))) +(*-------------------------------------------------------------------------*) ⊢ + ext_carr A R ≡ singleton A a. + +unification hint 0 ≔ A:setoid, a : carr A; + T ≟ setoid1_of_setoid A, + AA ≟ carr A, + MM ≟ mk_unary_morphism1 ?? + (λa:carr1 (setoid1_of_setoid A).{(a)}) (prop11 ?? (single_is_morph A)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 T (powerclass_setoid AA) MM a ≡ {(a)}. + +nlemma single_is_ext_morph:∀A:setoid.(setoid1_of_setoid A) ⇒_1 𝛀^A. +#A; @; ##[ #a; napply (single_is_ext ? a); ##] #a b E; @; #x; /3/; nqed. + +unification hint 1 ≔ AA : setoid, a: carr AA; + T ≟ ext_powerclass_setoid AA, + R ≟ mk_unary_morphism1 ?? + (λa:carr1 (setoid1_of_setoid AA). + mk_ext_powerclass AA {(a)} (ext_prop ? (single_is_ext AA a))) + (prop11 ?? (single_is_ext_morph AA)) +(*------------------------------------------------------*) ⊢ + ext_carr AA (fun11 (setoid1_of_setoid AA) T R a) ≡ singleton AA a. + (* alias symbol "hint_decl" = "hint_decl_Type2". @@ -281,21 +428,20 @@ nqed. (******************* first omomorphism theorem for sets **********************) ndefinition eqrel_of_morphism: - ∀A,B. unary_morphism A B → compatible_equivalence_relation A. + ∀A,B. A ⇒_0 B → compatible_equivalence_relation A. #A; #B; #f; @ [ @ [ napply (λx,y. f x = f y) ] /2/; ##| #x; #x'; #H; nwhd; alias symbol "prop1" = "prop1". napply (.= (†H)); // ] nqed. -ndefinition canonical_proj: ∀A,R. unary_morphism A (quotient A R). +ndefinition canonical_proj: ∀A,R. A ⇒_0 (quotient A R). #A; #R; @ [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ] nqed. ndefinition quotiented_mor: - ∀A,B.∀f:unary_morphism A B. - unary_morphism (quotient … (eqrel_of_morphism … f)) B. + ∀A,B.∀f:A ⇒_0 B.(quotient … (eqrel_of_morphism … f)) ⇒_0 B. #A; #B; #f; @ [ napply f ] //. nqed. @@ -306,41 +452,31 @@ nlemma first_omomorphism_theorem_functions1: alias symbol "eq" = "setoid eq". ndefinition surjective ≝ - λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:unary_morphism A B. + λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:A ⇒_0 B. ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y. ndefinition injective ≝ - λA,B.λS: ext_powerclass A.λf:unary_morphism A B. + λA,B.λS: ext_powerclass A.λf:A ⇒_0 B. ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'. nlemma first_omomorphism_theorem_functions2: - ∀A,B.∀f: unary_morphism A B. + ∀A,B.∀f:A ⇒_0 B. surjective … (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism … f)). /3/. nqed. nlemma first_omomorphism_theorem_functions3: - ∀A,B.∀f: unary_morphism A B. + ∀A,B.∀f:A ⇒_0 B. injective … (Full_set ?) (quotiented_mor … f). #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption. nqed. nrecord isomorphism (A, B : setoid) (S: ext_powerclass A) (T: ext_powerclass B) : Type[0] ≝ - { iso_f:> unary_morphism A B; + { iso_f:> A ⇒_0 B; f_closed: ∀x. x ∈ S → iso_f x ∈ T; f_sur: surjective … S T iso_f; f_inj: injective … S iso_f }. -nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W. -#A; #U; #V; #W; *; #H; #x; *; /2/. -nqed. - -nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W. -#A; #U; #V; #W; #H; #H1; #x; *; /2/. -nqed. - -nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V. -/3/. nqed. (* nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝ @@ -362,4 +498,36 @@ ncheck (λA:?. ; }. -*) \ No newline at end of file +*) + +(* Set theory *) + +nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W. +#A; #U; #V; #W; *; #H; #x; *; /2/. +nqed. + +nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W. +#A; #U; #V; #W; #H; #H1; #x; *; /2/. +nqed. + +nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V. +/3/. nqed. + +nlemma cupC : ∀S. ∀a,b:Ω^S.a ∪ b = b ∪ a. +#S a b; @; #w; *; nnormalize; /2/; nqed. + +nlemma cupID : ∀S. ∀a:Ω^S.a ∪ a = a. +#S a; @; #w; ##[*; //] /2/; nqed. + +(* XXX Bug notazione \cup, niente parentesi *) +nlemma cupA : ∀S.∀a,b,c:Ω^S.a ∪ b ∪ c = a ∪ (b ∪ c). +#S a b c; @; #w; *; /3/; *; /3/; nqed. + +ndefinition Empty_set : ∀A.Ω^A ≝ λA.{ x | False }. + +notation "∅" non associative with precedence 90 for @{ 'empty }. +interpretation "empty set" 'empty = (Empty_set ?). + +nlemma cup0 :∀S.∀A:Ω^S.A ∪ ∅ = A. +#S p; @; #w; ##[*; //| #; @1; //] *; nqed. +