X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsets.ma;h=f4b924dccaa26dc047f8ebc557d909b41f4e01fe;hb=3807c5d0fa5abceccbc67f40edb9939b353ead0e;hp=07c7884ce7fc35cd153630ad059c181d3cee789d;hpb=16b982158e86f41a8eb6c2375da4d9b96e697b3d;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index 07c7884ce..f4b924dcc 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -12,17 +12,18 @@ (* *) (**************************************************************************) -include "logic/equality.ma". +include "logic/cprop.ma". -nrecord powerset (A: Type) : Type[1] ≝ { mem: A → CProp }. +nrecord powerset (A: setoid) : Type[1] ≝ { mem_op:> unary_morphism1 A CPROP }. interpretation "powerset" 'powerset A = (powerset A). -interpretation "subset construction" 'subset \eta.x = (mk_powerset ? x). +interpretation "subset construction" 'subset \eta.x = + (mk_powerset ? (mk_unary_morphism1 ? CPROP x ?)). -interpretation "mem" 'mem a S = (mem ? S a). +interpretation "mem" 'mem a S = (mem_op ? S a). -ndefinition subseteq ≝ λA.λU,V.∀a:A. a ∈ U → a ∈ V. +ndefinition subseteq ≝ λA:setoid.λU,V.∀a:A. a ∈ U → a ∈ V. interpretation "subseteq" 'subseteq U V = (subseteq ? U V). @@ -32,21 +33,84 @@ nqed. ntheorem subseteq_trans: ∀A.∀S1,S2,S3: Ω \sup A. S1 ⊆ S2 → S2 ⊆ S3 → S1 ⊆ S3. #A; #S1; #S2; #S3; #H12; #H23; #x; #H; - napply (H23 ??); napply (H12 ??); nassumption; + napply H23; napply H12; nassumption; nqed. +ndefinition powerset_setoid1: setoid → setoid1. + #S; napply mk_setoid1 + [ napply (Ω \sup S) + | napply mk_equivalence_relation1 + [ #A; #B; napply (∀x. iff (x ∈ A) (x ∈ B)) + | nwhd; #x; #x0; napply mk_iff; #H; nassumption + | nwhd; #x; #y; #H; #A; napply mk_iff; #K + [ napply (fi ?? (H ?)) | napply (if ?? (H ?)) ] + nassumption + | nwhd; #A; #B; #C; #H1; #H2; #H3; napply mk_iff; #H4 + [ napply (if ?? (H2 ?)); napply (if ?? (H1 ?)); nassumption + | napply (fi ?? (H1 ?)); napply (fi ?? (H2 ?)); nassumption]##] +nqed. + +unification hint 0 (∀A.(λx,y.True) (Ω \sup A) (carr1 (powerset_setoid1 A))). + +ndefinition mem: ∀A:setoid. binary_morphism1 A (powerset_setoid1 A) CPROP. + #A; napply mk_binary_morphism1 + [ napply (λa.λA.a ∈ A) + | #a; #a'; #B; #B'; #Ha; #HB; napply mk_iff; #H + [ napply (. (†Ha^-1)); (* CSC: notation for ∈ not working *) + napply (if ?? (HB ?)); nassumption + | napply (. (†Ha)); napply (fi ?? (HB ?)); nassumption]##] +nqed. + +unification hint 0 (∀A,x,S. (λx,y.True) (mem_op A x S) (fun21 ??? (mem A) S x)). + ndefinition overlaps ≝ λA.λU,V:Ω \sup A.∃x:A.x ∈ U ∧ x ∈ V. interpretation "overlaps" 'overlaps U V = (overlaps ? U V). -ndefinition intersects ≝ λA.λU,V:Ω \sup A. {x | x ∈ U ∧ x ∈ V }. +ndefinition intersects ≝ λA:Type[0].λU,V:A → CProp[0]. λx. U x ∧ V x. interpretation "intersects" 'intersects U V = (intersects ? U V). +(* dovrebbe essere un binario? *) +ndefinition intersects_ok: ∀A. Ω \sup A → Ω \sup A → Ω \sup A. + #A; #U; #V; napply mk_powerset; napply mk_unary_morphism1 + [ napply (intersects ? (mem_op ? U) (mem_op ? V)) + | #a; #a'; #H; napply mk_iff; *; #H1; #H2 + [ nwhd; napply (. ((H^-1‡#)‡(H^-1‡#))); nwhd; napply conj; nassumption + | nwhd; napply (. ((H‡#)‡(H‡#))); nwhd; napply conj; nassumption] +nqed. + +unification hint 0 (∀A.∀U,V: Ω \sup A.∀w.(λx,y.True) + (intersects A U V w) (fun11 ?? (mem_op ? (intersects_ok A U V)) w)). + +nlemma test: ∀A. ∀U,V: Ω \sup A. ∀x,x':A. x=x' → (U ∩ V) x → (U ∩ V) x'. + #A; #U; #V; #x; #x'; #H; #p; + nwhd in ⊢ (? ? % % ?); + (* l'unification hint non funziona *) + nchange with (? ∈ (intersects_ok ? ? ?)); + napply (. (†H^-1)); + nassumption. +nqed. + +(* ndefinition union ≝ λA.λU,V:Ω \sup A. {x | x ∈ U ∨ x ∈ V }. interpretation "union" 'union U V = (union ? U V). -ndefinition singleton ≝ λA.λa:A.{b | a=b}. +ndefinition singleton ≝ λA:setoid.λa:A.{b | a=b}. + +interpretation "singleton" 'singl a = (singleton ? a).*) + +(* +(* qui non funziona una cippa *) +ndefinition image: ∀A,B. (carr A → carr B) → Ω \sup A → Ω \sup B ≝ + λA,B:setoid.λf:carr A → carr B.λSa:Ω \sup A. + {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq B) ? ?(*(f x) y*)}. + ##[##2: napply (f x); ##|##3: napply y] + #a; #a'; #H; nwhd; nnormalize; (* per togliere setoid1_of_setoid *) napply (mk_iff ????); + *; #x; #Hx; napply (ex_intro … x) + [ napply (. (#‡(#‡#))); -interpretation "singleton" 'singl a = (singleton ? a). +ndefinition counter_image: ∀A,B. (A → B) → Ω \sup B → Ω \sup A ≝ + λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}. +*)