X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Ftests%2Fcoercions_russell.ma;h=48639b3cb54afdad3c89def91c1b04be77f3e83b;hb=e880d6eab5e1700f4a625ddcd7d0fa8f0cce2dcc;hp=f504cef72e9e2a97576892e4d9d003c28df95722;hpb=5ec87fab28597f651b2792081da2264504f2dbf1;p=helm.git diff --git a/helm/software/matita/tests/coercions_russell.ma b/helm/software/matita/tests/coercions_russell.ma index f504cef72..48639b3cb 100644 --- a/helm/software/matita/tests/coercions_russell.ma +++ b/helm/software/matita/tests/coercions_russell.ma @@ -12,7 +12,7 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/test/russell/". + include "nat/orders.ma". include "list/list.ma". @@ -22,40 +22,33 @@ inductive sigma (A:Type) (P:A → Prop) : Type ≝ sig_intro: ∀a:A. P a → sigma A P. interpretation "sigma" 'exists \eta.x = - (cic:/matita/test/russell/sigma.ind#xpointer(1/1) _ x). + (cic:/matita/tests/coercions_russell/sigma.ind#xpointer(1/1) _ x). definition inject ≝ λP.λa:list nat.λp:P a. sig_intro ? P ? p. -coercion cic:/matita/test/russell/inject.con 0 1. +coercion cic:/matita/tests/coercions_russell/inject.con 0 1. definition eject ≝ λP.λc: ∃n:list nat.P n. match c with [ sig_intro w _ ⇒ w]. -coercion cic:/matita/test/russell/eject.con. +coercion cic:/matita/tests/coercions_russell/eject.con. alias symbol "exists" (instance 2) = "exists". lemma tl : ∀l:list nat. l ≠ [] → ∃l1.∃a.a :: l1 = l. -letin program ≝ - (λl:list nat. λH:l ≠ [].match l with [ nil ⇒ λH.[] | cons x l1 ⇒ λH.l1] H); -letin program_spec ≝ (program : ∀l:list nat. l ≠ [] → ∃l1.∃a.a :: l1 = l); - [ generalize in match H; cases l; [intros (h1); cases (h1 ?); reflexivity] - intros; apply (ex_intro ? ? n); apply eq_f; reflexivity; ] -exact program_spec; + apply rule (λl:list nat. λ_.match l with [ nil ⇒ [] | cons x l1 ⇒ l1]); + [ exists; [2: reflexivity | skip] + | destruct; elim H; reflexivity] qed. alias symbol "exists" (instance 3) = "exists". lemma tl2 : ∀l:∃l:list nat. l ≠ []. ∃l1.∃a.a :: l1 = l. -letin program ≝ - (λl:list nat. match l with [ nil ⇒ [] | cons x l1 ⇒ l1]); -letin program_spec ≝ - (program : ∀l:∃l:list nat. l ≠ []. ∃l1.∃a.a :: l1 = l); - [ autobatch; | generalize in match H; clear H; cases s; simplify; - intros; cases (H H1); ] -exact program_spec. +apply rule (λl:list nat. match l with [ nil ⇒ [] | cons x l1 ⇒ l1]); +[ autobatch; +| cases s in H; simplify; intros; cases (H H1); ] qed. definition nat_return := λn:nat. Some ? n. -coercion cic:/matita/test/russell/nat_return.con. +coercion cic:/matita/tests/coercions_russell/nat_return.con. definition raise_exn := None nat. @@ -76,67 +69,63 @@ include "nat/compare.ma". definition inject_opt ≝ λP.λa:option nat.λp:P a. sig_intro ? P ? p. -coercion cic:/matita/test/russell/inject_opt.con 0 1. +coercion cic:/matita/tests/coercions_russell/inject_opt.con 0 1. definition eject_opt ≝ λP.λc: ∃n:option nat.P n. match c with [ sig_intro w _ ⇒ w]. -coercion cic:/matita/test/russell/eject_opt.con. +coercion cic:/matita/tests/coercions_russell/eject_opt.con. -definition find : - ∀p:nat → bool. - ∀l:list nat. sigma ? (λres:option nat. +(* we may define mem as in the following lemma and get rid of it *) +definition find_spec ≝ + λl,p.λres:option nat. match res with [ None ⇒ ∀y. mem ? eqb y l = true → p y = false - | Some x ⇒ mem ? eqb x l = true ∧ p x = true ]). -letin program ≝ - (λp. + | Some x ⇒ mem ? eqb x l = true ∧ + p x = true ∧ + ∀y.mem ? eqb y l = true → p y = true → x ≠ y → + ∃l1,l2,l3.l = l1 @ [x] @ l2 @ [y] @ l3]. + +lemma mem_x_to_ex_l1_l2 : ∀l,x.mem ? eqb x l = true → ∃l1,l2.l = l1 @ [x] @ l2. +intros 2; elim l (H hd tl IH H); [simplify in H; destruct H] +generalize in match H; clear H; +simplify; apply (eqb_elim x hd); simplify; intros; +[1:clear IH; rewrite < H; apply (ex_intro ? ? []); +|2:lapply(IH H1); clear H1 IH; decompose; rewrite > H2; clear H2] +simplify; autobatch; +qed. + +notation > "'If' b 'Then' t 'Else' f" non associative +with precedence 90 for @{ match $b with [ true ⇒ $t | _ ⇒ $f ] }. + +alias symbol "exists" = "sigma". +definition sigma_find_spec : ∀p,l. ∃res.find_spec l p res. +apply rule (λp. let rec aux l ≝ - match l with + match l with [ nil ⇒ raise_exn - | cons x l ⇒ match p x with [ true ⇒ nat_return x | false ⇒ aux l ] - ] - in - aux); -apply - (program : ∀p:nat → bool. - ∀l:list nat. ∃res:option nat. - match res with - [ None ⇒ ∀y:nat. (mem nat eqb y l = true : Prop) → p y = false - | Some (x:nat) ⇒ mem nat eqb x l = true ∧ p x = true ]); -clear program; - [ cases (aux l1); clear aux; - simplify in ⊢ (match % in option return ? with [None⇒?|Some⇒?]); - generalize in match H2; clear H2; - cases a; - [ simplify; - intros 2; - apply (eqb_elim y n); - [ intros; - autobatch - | intros; - apply H2; - simplify in H4; - exact H4 - ] - | simplify; - intros; - cases H2; clear H2; - split; - [ elim (eqb n1 n); - simplify; - autobatch - | assumption - ] - ] - | unfold nat_return; simplify; - split; - [ rewrite > eqb_n_n; - reflexivity - | assumption - ] - | unfold raise_exn; simplify; - intros; - change in H1 with (false = true); - destruct H1 - ] + | cons x l ⇒ If p x Then nat_return x Else aux l] + in aux); +(* l = x::tl ∧ p x = false *) +[1: cases (aux l1); clear aux; + cases a in H2; simplify; + [1: intros 2; apply (eqb_elim y n); intros (Eyn); autobatch; + |2: intros; decompose; repeat split; [2: assumption]; intros; + [1: cases (eqb n1 n); simplify; autobatch; + |2: generalize in match (refl_eq ? (eqb y n)); + generalize in ⊢ (? ? ? %→?); + intro; cases b; clear b; intro Eyn; rewrite > Eyn in H3; simplify in H3; + [1: rewrite > (eqb_true_to_eq ? ? Eyn) in H6; rewrite > H1 in H6; destruct H6; + |2: lapply H4; try assumption; decompose; clear H4; rewrite > H8; + simplify; autobatch depth = 4;]]] +(* l = x::tl ∧ p x = true *) +|2: unfold find_spec; unfold nat_return; simplify; repeat split; [2: assumption] + [1: rewrite > eqb_n_n; reflexivity + |2: intro; generalize in match (refl_eq ? (eqb y n)); generalize in ⊢ (? ? ? %→?); + intro; cases b; clear b; intro Eyn; rewrite > Eyn; + [1: rewrite > (eqb_true_to_eq ? ? Eyn);] clear Eyn; simplify; intros; + [1: cases H4; reflexivity + |2: lapply (mem_x_to_ex_l1_l2 ? ? H2); decompose; rewrite > H6; + apply (ex_intro ? ? []); simplify; autobatch;]] +(* l = [] *) +|3: unfold raise_exn; simplify; intros; destruct H1;] qed. \ No newline at end of file