X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fcomponents%2Fng_cic_content%2FnTermCicContent.ml;fp=matita%2Fcomponents%2Fng_cic_content%2FnTermCicContent.ml;h=5cfda009c26bb564af3a45205860d931c320befb;hb=2c01ff6094173915e7023076ea48b5804dca7778;hp=0000000000000000000000000000000000000000;hpb=a050e3f80d7ea084ce0184279af98e8251c7d2a6;p=helm.git diff --git a/matita/components/ng_cic_content/nTermCicContent.ml b/matita/components/ng_cic_content/nTermCicContent.ml new file mode 100644 index 000000000..5cfda009c --- /dev/null +++ b/matita/components/ng_cic_content/nTermCicContent.ml @@ -0,0 +1,635 @@ +(* Copyright (C) 2005, HELM Team. + * + * This file is part of HELM, an Hypertextual, Electronic + * Library of Mathematics, developed at the Computer Science + * Department, University of Bologna, Italy. + * + * HELM is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * HELM is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with HELM; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, + * MA 02111-1307, USA. + * + * For details, see the HELM World-Wide-Web page, + * http://helm.cs.unibo.it/ + *) + +(* $Id: termAcicContent.ml 9304 2008-12-05 23:12:39Z sacerdot $ *) + +open Printf + +module Ast = CicNotationPt + +let debug = false +let debug_print s = if debug then prerr_endline (Lazy.force s) else () + +type id = string + +(* +type interpretation_id = int + +type term_info = + { sort: (Cic.id, Ast.sort_kind) Hashtbl.t; + uri: (Cic.id, UriManager.uri) Hashtbl.t; + } + +let get_types uri = + let o,_ = CicEnvironment.get_obj CicUniv.oblivion_ugraph uri in + match o with + | Cic.InductiveDefinition (l,_,leftno,_) -> l, leftno + | _ -> assert false +*) + +let idref register_ref = + let id = ref 0 in + fun ?reference t -> + incr id; + let id = "i" ^ string_of_int !id in + (match reference with None -> () | Some r -> register_ref id r); + Ast.AttributedTerm (`IdRef id, t) +;; + +let level_of_uri u = + let name = NUri.name_of_uri u in + assert(String.length name > String.length "Type"); + String.sub name 4 (String.length name - 4) +;; + +let destroy_nat = + let is_nat_URI = NUri.eq (NUri.uri_of_string + "cic:/matita/ng/arithmetics/nat/nat.ind") in + let is_zero = function + | NCic.Const (NReference.Ref (uri, NReference.Con (0, 1, 0))) when + is_nat_URI uri -> true + | _ -> false + in + let is_succ = function + | NCic.Const (NReference.Ref (uri, NReference.Con (0, 2, 0))) when + is_nat_URI uri -> true + | _ -> false + in + let rec aux acc = function + | NCic.Appl [he ; tl] when is_succ he -> aux (acc + 1) tl + | t when is_zero t -> Some acc + | _ -> None + in + aux 0 + +(* CODICE c&p da NCicPp *) +let nast_of_cic0 status + ~(idref: + ?reference:NReference.reference -> CicNotationPt.term -> CicNotationPt.term) + ~output_type ~metasenv ~subst k ~context = + function + | NCic.Rel n -> + (try + let name,_ = List.nth context (n-1) in + let name = if name = "_" then "__"^string_of_int n else name in + idref (Ast.Ident (name,None)) + with Failure "nth" | Invalid_argument "List.nth" -> + idref (Ast.Ident ("-" ^ string_of_int (n - List.length context),None))) + | NCic.Const r -> idref ~reference:r (Ast.Ident (NCicPp.r2s true r, None)) + | NCic.Meta (n,lc) when List.mem_assoc n subst -> + let _,_,t,_ = List.assoc n subst in + k ~context (NCicSubstitution.subst_meta lc t) + | NCic.Meta (n,(s,l)) -> + (* CSC: qua non dovremmo espandere *) + let l = NCicUtils.expand_local_context l in + idref (Ast.Meta + (n, List.map (fun x -> Some (k ~context (NCicSubstitution.lift s x))) l)) + | NCic.Sort NCic.Prop -> idref (Ast.Sort `Prop) + | NCic.Sort NCic.Type [] -> idref (Ast.Sort `Set) + | NCic.Sort NCic.Type ((`Type,u)::_) -> + idref(Ast.Sort (`NType (level_of_uri u))) + | NCic.Sort NCic.Type ((`CProp,u)::_) -> + idref(Ast.Sort (`NCProp (level_of_uri u))) + | NCic.Sort NCic.Type ((`Succ,u)::_) -> + idref(Ast.Sort (`NType (level_of_uri u ^ "+1"))) + | NCic.Implicit `Hole -> idref (Ast.UserInput) + | NCic.Implicit `Vector -> idref (Ast.Implicit `Vector) + | NCic.Implicit _ -> idref (Ast.Implicit `JustOne) + | NCic.Prod (n,s,t) -> + let n = if n.[0] = '_' then "_" else n in + let binder_kind = `Forall in + idref (Ast.Binder (binder_kind, (Ast.Ident (n,None), Some (k ~context s)), + k ~context:((n,NCic.Decl s)::context) t)) + | NCic.Lambda (n,s,t) -> + idref (Ast.Binder (`Lambda,(Ast.Ident (n,None), Some (k ~context s)), + k ~context:((n,NCic.Decl s)::context) t)) + | NCic.LetIn (n,s,ty,NCic.Rel 1) -> + idref (Ast.Cast (k ~context ty, k ~context s)) + | NCic.LetIn (n,s,ty,t) -> + idref (Ast.LetIn ((Ast.Ident (n,None), Some (k ~context s)), k ~context + ty, k ~context:((n,NCic.Decl s)::context) t)) + | NCic.Appl (NCic.Meta (n,lc) :: args) when List.mem_assoc n subst -> + let _,_,t,_ = List.assoc n subst in + let hd = NCicSubstitution.subst_meta lc t in + k ~context + (NCicReduction.head_beta_reduce ~upto:(List.length args) + (match hd with + | NCic.Appl l -> NCic.Appl (l@args) + | _ -> NCic.Appl (hd :: args))) + | NCic.Appl args as t -> + (match destroy_nat t with + | Some n -> idref (Ast.Num (string_of_int n, -1)) + | None -> + let args = + if not !Acic2content.hide_coercions then args + else + match + NCicCoercion.match_coercion status ~metasenv ~context ~subst t + with + | None -> args + | Some (_,sats,cpos) -> +(* CSC: sats e' il numero di pi, ma non so cosa farmene! voglio il numero di + argomenti da saltare, come prima! *) + if cpos < List.length args - 1 then + List.nth args (cpos + 1) :: + try snd (HExtlib.split_nth (cpos+sats+2) args) + with Failure _->[] + else + args + in + (match args with + [arg] -> idref (k ~context arg) + | _ -> idref (Ast.Appl (List.map (k ~context) args)))) + | NCic.Match (NReference.Ref (uri,_) as r,outty,te,patterns) -> + let name = NUri.name_of_uri uri in +(* CSC + let uri_str = UriManager.string_of_uri uri in + let puri_str = sprintf "%s#xpointer(1/%d)" uri_str (typeno+1) in + let ctor_puri j = + UriManager.uri_of_string + (sprintf "%s#xpointer(1/%d/%d)" uri_str (typeno+1) j) + in +*) + let case_indty = + name, None(*CSC Some (UriManager.uri_of_string puri_str)*) in + let constructors, leftno = + let _,leftno,tys,_,n = NCicEnvironment.get_checked_indtys r in + let _,_,_,cl = List.nth tys n in + cl,leftno + in + let rec eat_branch n ctx ty pat = + match (ty, pat) with + | NCic.Prod (name, s, t), _ when n > 0 -> + eat_branch (pred n) ctx t pat + | NCic.Prod (_, _, t), NCic.Lambda (name, s, t') -> + let cv, rhs = eat_branch 0 ((name,NCic.Decl s)::ctx) t t' in + (Ast.Ident (name,None), Some (k ~context:ctx s)) :: cv, rhs + | _, _ -> [], k ~context:ctx pat + in + let j = ref 0 in + let patterns = + try + List.map2 + (fun (_, name, ty) pat -> + incr j; + let name,(capture_variables,rhs) = + match output_type with + `Term -> name, eat_branch leftno context ty pat + | `Pattern -> "_", ([], k ~context pat) + in + Ast.Pattern (name, None(*CSC Some (ctor_puri !j)*), capture_variables), rhs + ) constructors patterns + with Invalid_argument _ -> assert false + in + let indty = + match output_type with + `Pattern -> None + | `Term -> Some case_indty + in + idref (Ast.Case (k ~context te, indty, Some (k ~context outty), patterns)) +;; + + (* persistent state *) + +(* +let initial_level2_patterns32 () = Hashtbl.create 211 +let initial_interpretations () = Hashtbl.create 211 + +let level2_patterns32 = ref (initial_level2_patterns32 ()) +(* symb -> id list ref *) +let interpretations = ref (initial_interpretations ()) +*) +let compiled32 = ref None +(* +let pattern32_matrix = ref [] +let counter = ref ~-1 + +let stack = ref [] + +let push () = + stack := (!counter,!level2_patterns32,!interpretations,!compiled32,!pattern32_matrix)::!stack; + counter := ~-1; + level2_patterns32 := initial_level2_patterns32 (); + interpretations := initial_interpretations (); + compiled32 := None; + pattern32_matrix := [] +;; + +let pop () = + match !stack with + [] -> assert false + | (ocounter,olevel2_patterns32,ointerpretations,ocompiled32,opattern32_matrix)::old -> + stack := old; + counter := ocounter; + level2_patterns32 := olevel2_patterns32; + interpretations := ointerpretations; + compiled32 := ocompiled32; + pattern32_matrix := opattern32_matrix +;; +*) + +let get_compiled32 () = + match !compiled32 with + | None -> assert false + | Some f -> Lazy.force f + +let set_compiled32 f = compiled32 := Some f + +let add_idrefs = + List.fold_right (fun idref t -> Ast.AttributedTerm (`IdRef idref, t)) + +let instantiate32 idrefs env symbol args = + let rec instantiate_arg = function + | Ast.IdentArg (n, name) -> + let t = + try List.assoc name env + with Not_found -> prerr_endline ("name not found in env: "^name); + assert false + in + let rec count_lambda = function + | Ast.AttributedTerm (_, t) -> count_lambda t + | Ast.Binder (`Lambda, _, body) -> 1 + count_lambda body + | _ -> 0 + in + let rec add_lambda t n = + if n > 0 then + let name = CicNotationUtil.fresh_name () in + Ast.Binder (`Lambda, (Ast.Ident (name, None), None), + Ast.Appl [add_lambda t (n - 1); Ast.Ident (name, None)]) + else + t + in + add_lambda t (n - count_lambda t) + in + let head = + let symbol = Ast.Symbol (symbol, 0) in + add_idrefs idrefs symbol + in + if args = [] then head + else Ast.Appl (head :: List.map instantiate_arg args) + +let rec nast_of_cic1 status ~idref ~output_type ~metasenv ~subst ~context term = + match (get_compiled32 ()) term with + | None -> + nast_of_cic0 status ~idref ~output_type ~metasenv ~subst + (nast_of_cic1 status ~idref ~output_type ~metasenv ~subst) ~context term + | Some (env, ctors, pid) -> + let idrefs = + List.map + (fun term -> + let attrterm = + idref + ~reference: + (match term with NCic.Const nref -> nref | _ -> assert false) + (CicNotationPt.Ident ("dummy",None)) + in + match attrterm with + Ast.AttributedTerm (`IdRef id, _) -> id + | _ -> assert false + ) ctors + in + let env = + List.map + (fun (name, term) -> + name, + nast_of_cic1 status ~idref ~output_type ~subst ~metasenv ~context + term + ) env + in + let _, symbol, args, _ = + try + TermAcicContent.find_level2_patterns32 pid + with Not_found -> assert false + in + let ast = instantiate32 idrefs env symbol args in + idref ast (*Ast.AttributedTerm (`IdRef (idref term), ast)*) +;; + +let load_patterns32 t = + let t = + HExtlib.filter_map (function (true, ap, id) -> Some (ap, id) | _ -> None) t + in + set_compiled32 (lazy (Ncic2astMatcher.Matcher32.compiler t)) +in + TermAcicContent.add_load_patterns32 load_patterns32; + TermAcicContent.init () +;; + +(* +let ast_of_acic ~output_type id_to_sort annterm = + debug_print (lazy ("ast_of_acic <- " + ^ CicPp.ppterm (Deannotate.deannotate_term annterm))); + let term_info = { sort = id_to_sort; uri = Hashtbl.create 211 } in + let ast = ast_of_acic1 ~output_type term_info annterm in + debug_print (lazy ("ast_of_acic -> " ^ CicNotationPp.pp_term ast)); + ast, term_info.uri + +let fresh_id = + fun () -> + incr counter; + !counter + +let add_interpretation dsc (symbol, args) appl_pattern = + let id = fresh_id () in + Hashtbl.add !level2_patterns32 id (dsc, symbol, args, appl_pattern); + pattern32_matrix := (true, appl_pattern, id) :: !pattern32_matrix; + load_patterns32 !pattern32_matrix; + (try + let ids = Hashtbl.find !interpretations symbol in + ids := id :: !ids + with Not_found -> Hashtbl.add !interpretations symbol (ref [id])); + id + +let get_all_interpretations () = + List.map + (function (_, _, id) -> + let (dsc, _, _, _) = + try + Hashtbl.find !level2_patterns32 id + with Not_found -> assert false + in + (id, dsc)) + !pattern32_matrix + +let get_active_interpretations () = + HExtlib.filter_map (function (true, _, id) -> Some id | _ -> None) + !pattern32_matrix + +let set_active_interpretations ids = + let pattern32_matrix' = + List.map + (function + | (_, ap, id) when List.mem id ids -> (true, ap, id) + | (_, ap, id) -> (false, ap, id)) + !pattern32_matrix + in + pattern32_matrix := pattern32_matrix'; + load_patterns32 !pattern32_matrix + +exception Interpretation_not_found + +let lookup_interpretations symbol = + try + HExtlib.list_uniq + (List.sort Pervasives.compare + (List.map + (fun id -> + let (dsc, _, args, appl_pattern) = + try + Hashtbl.find !level2_patterns32 id + with Not_found -> assert false + in + dsc, args, appl_pattern) + !(Hashtbl.find !interpretations symbol))) + with Not_found -> raise Interpretation_not_found + +let remove_interpretation id = + (try + let dsc, symbol, _, _ = Hashtbl.find !level2_patterns32 id in + let ids = Hashtbl.find !interpretations symbol in + ids := List.filter ((<>) id) !ids; + Hashtbl.remove !level2_patterns32 id; + with Not_found -> raise Interpretation_not_found); + pattern32_matrix := + List.filter (fun (_, _, id') -> id <> id') !pattern32_matrix; + load_patterns32 !pattern32_matrix + +let _ = load_patterns32 [] + +let instantiate_appl_pattern + ~mk_appl ~mk_implicit ~term_of_uri env appl_pattern += + let lookup name = + try List.assoc name env + with Not_found -> + prerr_endline (sprintf "Name %s not found" name); + assert false + in + let rec aux = function + | Ast.UriPattern uri -> term_of_uri uri + | Ast.ImplicitPattern -> mk_implicit false + | Ast.VarPattern name -> lookup name + | Ast.ApplPattern terms -> mk_appl (List.map aux terms) + in + aux appl_pattern +*) + +let nmap_sequent0 status ~idref ~metasenv ~subst (i,(n,context,ty)) = + let module K = Content in + let nast_of_cic = + nast_of_cic1 status ~idref ~output_type:`Term ~metasenv ~subst in + let context',_ = + List.fold_right + (fun item (res,context) -> + match item with + | name,NCic.Decl t -> + Some + (* We should call build_decl_item, but we have not computed *) + (* the inner-types ==> we always produce a declaration *) + (`Declaration + { K.dec_name = (Some name); + K.dec_id = "-1"; + K.dec_inductive = false; + K.dec_aref = "-1"; + K.dec_type = nast_of_cic ~context t + })::res,item::context + | name,NCic.Def (t,ty) -> + Some + (* We should call build_def_item, but we have not computed *) + (* the inner-types ==> we always produce a declaration *) + (`Definition + { K.def_name = (Some name); + K.def_id = "-1"; + K.def_aref = "-1"; + K.def_term = nast_of_cic ~context t; + K.def_type = nast_of_cic ~context ty + })::res,item::context + ) context ([],[]) + in + ("-1",i,context',nast_of_cic ~context ty) +;; + +let nmap_sequent status ~metasenv ~subst conjecture = + let module K = Content in + let ids_to_refs = Hashtbl.create 211 in + let register_ref = Hashtbl.add ids_to_refs in + nmap_sequent0 status ~idref:(idref register_ref) ~metasenv ~subst conjecture, + ids_to_refs +;; + +let object_prefix = "obj:";; +let declaration_prefix = "decl:";; +let definition_prefix = "def:";; +let inductive_prefix = "ind:";; +let joint_prefix = "joint:";; + +let get_id = + function + Ast.AttributedTerm (`IdRef id, _) -> id + | _ -> assert false +;; + +let gen_id prefix seed = + let res = prefix ^ string_of_int !seed in + incr seed ; + res +;; + +let build_def_item seed context metasenv id n t ty = + let module K = Content in +(* + try + let sort = Hashtbl.find ids_to_inner_sorts id in + if sort = `Prop then + (let p = + (acic2content seed context metasenv ?name:(name_of n) ~ids_to_inner_sorts ~ids_to_inner_types t) + in + `Proof p;) + else +*) + `Definition + { K.def_name = Some n; + K.def_id = gen_id definition_prefix seed; + K.def_aref = id; + K.def_term = t; + K.def_type = ty + } +(* + with + Not_found -> assert false +*) + +let build_decl_item seed id n s = + let module K = Content in +(* + let sort = + try + Some (Hashtbl.find ids_to_inner_sorts (Cic2acic.source_id_of_id id)) + with Not_found -> None + in + match sort with + | Some `Prop -> + `Hypothesis + { K.dec_name = name_of n; + K.dec_id = gen_id declaration_prefix seed; + K.dec_inductive = false; + K.dec_aref = id; + K.dec_type = s + } + | _ -> +*) + `Declaration + { K.dec_name = Some n; + K.dec_id = gen_id declaration_prefix seed; + K.dec_inductive = false; + K.dec_aref = id; + K.dec_type = s + } +;; + +let nmap_obj status (uri,_,metasenv,subst,kind) = + let module K = Content in + let ids_to_refs = Hashtbl.create 211 in + let register_ref = Hashtbl.add ids_to_refs in + let idref = idref register_ref in + let nast_of_cic = + nast_of_cic1 status ~idref ~output_type:`Term ~metasenv ~subst in + let seed = ref 0 in + let conjectures = + match metasenv with + [] -> None + | _ -> (*Some (List.map (map_conjectures seed) metasenv)*) + (*CSC: used to be the previous line, that uses seed *) + Some (List.map (nmap_sequent0 status ~idref ~metasenv ~subst) metasenv) + in +let build_constructors seed l = + List.map + (fun (_,n,ty) -> + let ty = nast_of_cic ~context:[] ty in + { K.dec_name = Some n; + K.dec_id = gen_id declaration_prefix seed; + K.dec_inductive = false; + K.dec_aref = ""; + K.dec_type = ty + }) l +in +let build_inductive b seed = + fun (_,n,ty,cl) -> + let ty = nast_of_cic ~context:[] ty in + `Inductive + { K.inductive_id = gen_id inductive_prefix seed; + K.inductive_name = n; + K.inductive_kind = b; + K.inductive_type = ty; + K.inductive_constructors = build_constructors seed cl + } +in +let build_fixpoint b seed = + fun (_,n,_,ty,t) -> + let t = nast_of_cic ~context:[] t in + let ty = nast_of_cic ~context:[] ty in + `Definition + { K.def_id = gen_id inductive_prefix seed; + K.def_name = Some n; + K.def_aref = ""; + K.def_type = ty; + K.def_term = t; + } +in + let res = + match kind with + | NCic.Fixpoint (is_rec, ifl, _) -> + (gen_id object_prefix seed, [], conjectures, + `Joint + { K.joint_id = gen_id joint_prefix seed; + K.joint_kind = + if is_rec then + `Recursive (List.map (fun (_,_,i,_,_) -> i) ifl) + else `CoRecursive; + K.joint_defs = List.map (build_fixpoint is_rec seed) ifl + }) + | NCic.Inductive (is_ind, lno, itl, _) -> + (gen_id object_prefix seed, [], conjectures, + `Joint + { K.joint_id = gen_id joint_prefix seed; + K.joint_kind = + if is_ind then `Inductive lno else `CoInductive lno; + K.joint_defs = List.map (build_inductive is_ind seed) itl + }) + | NCic.Constant (_,_,Some bo,ty,_) -> + let ty = nast_of_cic ~context:[] ty in + let bo = nast_of_cic ~context:[] bo in + (gen_id object_prefix seed, [], conjectures, + `Def (K.Const,ty, + build_def_item seed [] [] (get_id bo) (NUri.name_of_uri uri) bo ty)) + | NCic.Constant (_,_,None,ty,_) -> + let ty = nast_of_cic ~context:[] ty in + (gen_id object_prefix seed, [], conjectures, + `Decl (K.Const, + (*CSC: ??? get_id ty here used to be the id of the axiom! *) + build_decl_item seed (get_id ty) (NUri.name_of_uri uri) ty)) + in + res,ids_to_refs +;;