X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fcomponents%2Fng_tactics%2Fdeclarative.ml;h=0802edd1dd90f441b6971a886bf587d563d92816;hb=489639a3c319d0349a9c864fd0eeaf659daa3d3f;hp=532ffbb3767b983780b5e42140677e72a2294c9d;hpb=b6ceb877c05d27705ef163488aee38e60a86886c;p=helm.git diff --git a/matita/components/ng_tactics/declarative.ml b/matita/components/ng_tactics/declarative.ml index 532ffbb37..0802edd1d 100644 --- a/matita/components/ng_tactics/declarative.ml +++ b/matita/components/ng_tactics/declarative.ml @@ -1,14 +1,14 @@ (* Copyright (C) 2019, HELM Team. - * + * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. - * + * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. - * + * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the @@ -18,13 +18,555 @@ * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. - * + * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. - *) +*) +open Continuationals.Stack module Ast = NotationPt open NTactics +open NTacStatus + +type just = [ `Term of NTacStatus.tactic_term | `Auto of NnAuto.auto_params ] + +let mk_just status goal = + function + `Auto (l,params) -> NnAuto.auto_lowtac ~params:(l,params) status goal + | `Term t -> apply_tac t + +exception NotAProduct +exception FirstTypeWrong +exception NotEquivalentTypes + +let extract_first_goal_from_status status = + let s = status#stack in + match s with + | [] -> fail (lazy "There's nothing to prove") + | (g1, _, k, tag1) :: tl -> + let goals = filter_open g1 in + let (loc::tl) = goals in + let goal = goal_of_loc (loc) in + goal ;; + (* + let (_,_,metasenv,_,_) = status#obj in + match metasenv with + | [] -> fail (lazy "There's nothing to prove") + | (hd,_) :: tl -> hd + *) + +let extract_conclusion_type status goal = + let gty = get_goalty status goal in + let ctx = ctx_of gty in + let status,gty = term_of_cic_term status gty ctx in + gty +;; + +let alpha_eq_tacterm_kerterm ty t status goal = + let gty = get_goalty status goal in + let ctx = ctx_of gty in + let status,cicterm = disambiguate status ctx ty `XTNone (*(`XTSome (mk_cic_term ctx t))*) in + let (_,_,metasenv,subst,_) = status#obj in + let status,ty = term_of_cic_term status cicterm ctx in + if NCicReduction.alpha_eq status metasenv subst ctx t ty then + true + else + false +;; + +let are_convertible ty1 ty2 status goal = + let gty = get_goalty status goal in + let ctx = ctx_of gty in + let status,cicterm1 = disambiguate status ctx ty1 `XTNone (*(`XTSome (mk_cic_term ctx t))*) in + let status,cicterm2 = disambiguate status ctx ty2 `XTNone (*(`XTSome (mk_cic_term ctx t))*) in + NTacStatus.are_convertible status ctx cicterm1 cicterm2 + +(* LCF-like tactic that checks whether the conclusion of the sequent of the given goal is a product, checks that + the type of the conclusion's bound variable is the same as t1 and then uses an exact_tac with + \lambda id: t1. ?. If a t2 is given it checks that t1 ~_{\beta} t2 and uses and exact_tac with \lambda id: t2. ? +*) +let lambda_abstract_tac id t1 t2 status goal = + match extract_conclusion_type status goal with + | NCic.Prod (_,t,_) -> + if alpha_eq_tacterm_kerterm t1 t status goal then + match t2 with + | None -> + let (_,_,t1) = t1 in + exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (id,None),Some t1),Ast.Implicit + `JustOne))) (*status*) + | Some t2 -> + let status,res = are_convertible t1 t2 status goal in + if res then + let (_,_,t2) = t2 in + exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (id,None),Some t2),Ast.Implicit + `JustOne))) (*status*) + else + raise NotEquivalentTypes + else + raise FirstTypeWrong + | _ -> raise NotAProduct + +let assume name ty eqty (*status*) = +(* let goal = extract_first_goal_from_status status in *) + distribute_tac (fun status goal -> + try exec (lambda_abstract_tac name ty eqty status goal) status goal + with + | NotAProduct -> fail (lazy "You can't assume without an universal quantification") + | FirstTypeWrong -> fail (lazy "The assumed type is wrong") + | NotEquivalentTypes -> fail (lazy "The two given types are not equivalent") + ) +;; + +let suppose t1 id t2 (*status*) = +(* let goal = extract_first_goal_from_status status in *) + distribute_tac (fun status goal -> + try exec (lambda_abstract_tac id t1 t2 status goal) status goal + with + | NotAProduct -> fail (lazy "You can't suppose without a logical implication") + | FirstTypeWrong -> fail (lazy "The supposed proposition is different from the premise") + | NotEquivalentTypes -> fail (lazy "The two given propositions are not equivalent") + ) +;; + +let assert_tac t1 t2 status goal continuation = + let t = extract_conclusion_type status goal in + if alpha_eq_tacterm_kerterm t1 t status goal then + match t2 with + | None -> continuation + | Some t2 -> + let status,res = are_convertible t1 t2 status goal in + if res then continuation + else + raise NotEquivalentTypes + else + raise FirstTypeWrong + +let mustdot status = + let s = status#stack in + match s with + | [] -> fail (lazy "No goals to dot") + | (_, _, k, _) :: tl -> + if List.length k > 0 then + true + else + false + +let bydone just status = + let goal = extract_first_goal_from_status status in + let mustdot = mustdot status in +(* + let goal,mustdot = + let s = status#stack in + match s with + | [] -> fail (lazy "Invalid use of done") + | (g1, _, k, tag1) :: tl -> + let goals = filter_open g1 in + let (loc::tl) = goals in + let goal = goal_of_loc (loc) in + if List.length k > 0 then + goal,true + else + goal,false + in + + *) +(* + let goals = filter_open g1 in + let (loc::tl) = goals in + let goal = goal_of_loc (loc) in + if tag1 == `BranchTag then + if List.length (shift_goals s) > 0 then (* must simply shift *) + ( + prerr_endline (pp status#stack); + prerr_endline "Head goals:"; + List.map (fun goal -> prerr_endline (string_of_int goal)) (head_goals status#stack); + prerr_endline "Shift goals:"; + List.map (fun goal -> prerr_endline (string_of_int goal)) (shift_goals status#stack); + prerr_endline "Open goals:"; + List.map (fun goal -> prerr_endline (string_of_int goal)) (open_goals status#stack); + if tag2 == `BranchTag && g2 <> [] then + goal,true,false,false + else if tag2 == `BranchTag then + goal,false,true,true + else + goal,false,true,false + ) + else + ( + if tag2 == `BranchTag then + goal,false,true,true + else + goal,false,true,false + ) + else + goal,false,false,false (* It's a strange situation, there's is an underlying level on the + stack but the current one was not created by a branch? Should be + an error *) + | (g, _, _, tag) :: [] -> + let (loc::tl) = filter_open g in + let goal = goal_of_loc (loc) in + if tag == `BranchTag then +(* let goals = filter_open g in *) + goal,false,true,false + else + goal,false,false,false + in + *) + let l = [mk_just status goal just] in + let l = + if mustdot then List.append l [dot_tac] else l + in + (* + let l = + if mustmerge then List.append l [merge_tac] else l + in + let l = + if mustmergetwice then List.append l [merge_tac] else l + in + *) + block_tac l status +(* + let (_,_,metasenv,subst,_) = status#obj in + let goal,last = + match metasenv with + | [] -> fail (lazy "There's nothing to prove") + | (_,_) :: (hd,_) :: tl -> hd,false + | (hd,_) :: tl -> hd,true + in + if last then + mk_just status goal just status + else + block_tac [ mk_just status goal just; shift_tac ] status +*) +;; + +let we_need_to_prove t id t1 status = + let goal = extract_first_goal_from_status status in + match id with + | None -> + ( + match t1 with + | None -> (* We need to prove t *) + ( + try assert_tac t None status goal (id_tac status) + with + | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") + ) + | Some t1 -> (* We need to prove t or equivalently t1 *) + ( + try assert_tac t (Some t1) status goal (change_tac ~where:("",0,(None,[],Some + Ast.UserInput)) ~with_what:t1 status) + with + | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") + | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") + ) + ) + | Some id -> + ( + match t1 with + (* We need to prove t (id) *) + | None -> block_tac [cut_tac t; branch_tac; shift_tac; intro_tac id; merge_tac; + dot_tac + ] status + (* We need to prove t (id) or equivalently t1 *) + | Some t1 -> block_tac [cut_tac t; branch_tac ; change_tac ~where:("",0,(None,[],Some + Ast.UserInput)) + ~with_what:t1; shift_tac; intro_tac id; merge_tac; + dot_tac + ] + status + ) +;; + +let by_just_we_proved just ty id ty' status = + let goal = extract_first_goal_from_status status in + let wrappedjust = just in + let just = mk_just status goal just in + match id with + | None -> + (match ty' with + | None -> (* just we proved P done *) + ( + try + assert_tac ty None status goal (bydone wrappedjust status) + with + | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") + | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") + ) + | Some ty' -> (* just we proved P that is equivalent to P' done *) + ( + try + assert_tac ty' None status goal (block_tac [change_tac ~where:("",0,(None,[],Some + Ast.UserInput)) + ~with_what:ty; bydone wrappedjust] + status ) + with + | FirstTypeWrong -> fail (lazy "The second proposition is not the same as the conclusion") + | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") + ) + ) + | Some id -> + ( + match ty' with + | None -> block_tac [cut_tac ty; branch_tac; just; shift_tac; intro_tac id; merge_tac ] status + | Some ty' -> block_tac [cut_tac ty; branch_tac; just; shift_tac; intro_tac id; change_tac + ~where:("",0,(None,[id,Ast.UserInput],None)) ~with_what:ty'; + merge_tac] status + ) +;; + +let existselim just id1 t1 t2 id2 (*status*) = + distribute_tac (fun status goal -> + let (_,_,t1) = t1 in + let (_,_,t2) = t2 in + let just = mk_just status goal just in + exec (block_tac [ + cut_tac ("",0,(Ast.Appl [Ast.Ident ("ex",None); t1; Ast.Binder (`Lambda,(Ast.Ident + (id1,None), Some t1),t2)])); + branch_tac ~force:false; + just; + shift_tac; + case1_tac "_"; + intros_tac ~names_ref:(ref []) [id1;id2]; + merge_tac + ]) status goal + ) +;; + +let andelim just t1 id1 t2 id2 (*status*) = +(* let goal = extract_first_goal_from_status status in *) + distribute_tac (fun status goal -> + let (_,_,t1) = t1 in + let (_,_,t2) = t2 in + let just = mk_just status goal just in + exec (block_tac [ + cut_tac ("",0,(Ast.Appl [Ast.Ident ("And",None); t1 ; t2])); + branch_tac ~force:false; + just; + shift_tac; + case1_tac "_"; + intros_tac ~names_ref:(ref []) [id1;id2]; + merge_tac + ]) status goal + ) +;; + +let type_of_tactic_term status ctx t = + let status,cicterm = disambiguate status ctx t `XTNone in + let (_,cicty) = typeof status ctx cicterm in + cicty + +let swap_first_two_goals_tac status = + let gstatus = + match status#stack with + | [] -> assert false + | (g,t,k,tag) :: s -> + match g with + | (loc1) :: (loc2) :: tl -> + ([loc2;loc1] @+ tl,t,k,tag) :: s + | _ -> assert false + in + status#set_stack gstatus + +let thesisbecomes t1 t2 = we_need_to_prove t1 None t2 +;; + +let obtain id t1 status = + let goal = extract_first_goal_from_status status in + let cicgty = get_goalty status goal in + let ctx = ctx_of cicgty in + let cicty = type_of_tactic_term status ctx t1 in + let _,ty = term_of_cic_term status cicty ctx in + let (_,_,t1) = t1 in + block_tac [ cut_tac ("",0,(Ast.Appl [Ast.Ident ("eq",None); Ast.NCic ty; t1; Ast.Implicit + `JustOne])); + swap_first_two_goals_tac; + branch_tac; shift_tac; shift_tac; intro_tac id; merge_tac; dot_tac; + ] + status +;; + +let conclude t1 = + distribute_tac (fun status goal -> + let cicgty = get_goalty status goal in + let ctx = ctx_of cicgty in + let _,gty = term_of_cic_term status cicgty ctx in + match gty with + NCic.Appl [_;_;plhs;_] -> + if alpha_eq_tacterm_kerterm t1 plhs status goal then + exec id_tac status goal + else + fail (lazy "The given conclusion is different from the left-hand side of the current conclusion") + | _ -> fail (lazy "Your conclusion needs to be an equality") + ) +;; + +let rewritingstep rhs just last_step status = + let goal = extract_first_goal_from_status status in + let cicgty = get_goalty status goal in + let ctx = ctx_of cicgty in + let _,gty = term_of_cic_term status cicgty ctx in + let cicty = type_of_tactic_term status ctx rhs in + let _,ty = term_of_cic_term status cicty ctx in + let just' = (* Extraction of the ""justification"" from the ad hoc justification *) + match just with + `Auto (univ, params) -> + let params = + if not (List.mem_assoc "timeout" params) then + ("timeout","3")::params + else params + in + let params' = + if not (List.mem_assoc "paramodulation" params) then + ("paramodulation","1")::params + else params + in + if params = params' then NnAuto.auto_lowtac ~params:(univ, params) status goal + else + first_tac [NnAuto.auto_lowtac ~params:(univ, params) status goal; NnAuto.auto_lowtac + ~params:(univ, params') status goal] + | `Term just -> apply_tac just + | `SolveWith term -> NnAuto.demod_tac ~params:(Some [term], ["all","1";"steps","1"; "use_ctx","false"]) + | `Proof -> id_tac + in + let plhs,prhs,prepare = + match gty with (* Extracting the lhs and rhs of the previous equality *) + NCic.Appl [_;_;plhs;prhs] -> plhs,prhs,(fun continuation -> continuation status) + | _ -> fail (lazy "You are not building an equaility chain") + in + let continuation = + if last_step then + (*CSC:manca controllo sul fatto che rhs sia convertibile con prhs*) + let todo = [just'] in + let todo = if mustdot status then List.append todo [dot_tac] else todo + in + block_tac todo + else + let (_,_,rhs) = rhs in + block_tac [apply_tac ("",0,Ast.Appl [Ast.Ident ("trans_eq",None); Ast.NCic ty; Ast.NCic plhs; + rhs; Ast.NCic prhs]); branch_tac; just'; merge_tac] + in + prepare continuation +;; + +(* + let goal = extract_first_goal_from_status status in + let cicgty = get_goalty status goal in + let ctx = ctx_of cicgty in + let _,gty = term_of_cic_term status cicgty ctx in + let cicty = type_of_tactic_term status ctx rhs in + let _,ty = term_of_cic_term status cicty ctx in + let just' = (* Extraction of the ""justification"" from the ad hoc justification *) + match just with + `Auto (univ, params) -> + let params = + if not (List.mem_assoc "timeout" params) then + ("timeout","3")::params + else params + in + let params' = + if not (List.mem_assoc "paramodulation" params) then + ("paramodulation","1")::params + else params + in + if params = params' then NnAuto.auto_lowtac ~params:(univ, params) status goal + else + first_tac [NnAuto.auto_lowtac ~params:(univ, params) status goal; NnAuto.auto_lowtac + ~params:(univ, params') status goal] + | `Term just -> apply_tac just + | `SolveWith term -> NnAuto.demod_tac ~params:(Some [term], ["all","1";"steps","1"; "use_ctx","false"]) + | `Proof -> id_tac + in + let plhs,prhs,prepare = + match lhs with + None -> (* = E2 *) + let plhs,prhs = + match gty with (* Extracting the lhs and rhs of the previous equality *) + NCic.Appl [_;_;plhs;prhs] -> plhs,prhs + | _ -> fail (lazy "You are not building an equaility chain") + in + plhs,prhs, + (fun continuation -> continuation status) + | Some (None,lhs) -> (* conclude *) + let plhs,prhs = + match gty with + NCic.Appl [_;_;plhs;prhs] -> plhs,prhs + | _ -> fail (lazy "You are not building an equaility chain") + in + (*TODO*) + (*CSC: manca check plhs convertibile con lhs *) + plhs,prhs, + (fun continuation -> continuation status) + | Some (Some name,lhs) -> (* obtain *) + NCic.Rel 1, NCic.Rel 1, (* continuation for this case is gonna be ignored, so it doesn't + matter what the values of these two are *) + (fun continuation -> + let (_,_,lhs) = lhs in + block_tac [ cut_tac ("",0,(Ast.Appl [Ast.Ident ("eq",None); Ast.NCic ty; lhs; Ast.Implicit + `JustOne])); + swap_first_two_goals_tac; + branch_tac; shift_tac; shift_tac; intro_tac name; merge_tac; dot_tac; +(* + change_tac ~where:("",0,(None,[],Some Ast.Appl[Ast.Implicit `JustOne;Ast.Implicit + `JustOne; Ast.UserInput; Ast.Implicit `JustOne])) + ~with_what:rhs +*) + ] + status + ) + in + let continuation = + if last_step then + (*CSC:manca controllo sul fatto che rhs sia convertibile con prhs*) + let todo = [just'] in + let todo = if mustdot status then List.append todo [dot_tac] else todo + in + block_tac todo + else + let (_,_,rhs) = rhs in + block_tac [apply_tac ("",0,Ast.Appl [Ast.Ident ("trans_eq",None); Ast.NCic ty; Ast.NCic plhs; + rhs; Ast.NCic prhs]); branch_tac; just'; merge_tac] + in + prepare continuation +;; + *) + +let we_proceed_by_cases_on t1 t2 status = + let goal = extract_first_goal_from_status status in + try + assert_tac t2 None status goal (block_tac [cases_tac ~what:t1 ~where:("",0,(None,[],Some + Ast.UserInput)); + dot_tac] status) + with + | FirstTypeWrong -> fail (lazy "What you want to prove is different from the conclusion") + +let we_proceed_by_induction_on t1 t2 status = + let goal = extract_first_goal_from_status status in + try + assert_tac t2 None status goal (block_tac [elim_tac ~what:t1 ~where:("",0,(None,[],Some + Ast.UserInput)); + dot_tac] status) + with + | FirstTypeWrong -> fail (lazy "What you want to prove is different from the conclusion") +;; + +let byinduction t1 id = suppose t1 id None ;; + +let case id l = + distribute_tac (fun status goal -> + let rec aux l = + match l with + [] -> [id_tac] + | (id,ty)::tl -> + (try_tac (assume id ("",0,ty) None)) :: (aux tl) + in +(* if l == [] then exec (try_tac (intro_tac "H")) status goal *) +(* else *) + exec (block_tac (aux l)) status goal + ) +;; + +let print_stack status = prerr_endline ("PRINT STACK: " ^ (pp status#stack)); id_tac status ;; -let assume name ty = - exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (name,None),Some ty),Ast.Implicit `JustOne))) +(* vim: ts=2: sw=0: et: + * *)