X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fcomponents%2Fng_tactics%2Fdeclarative.ml;h=3a700ba961d28583bb89bb1c4e0d2c6a8e9b7984;hb=3fab56d1663ba3d5aeb9207612279e0bb0edbb8c;hp=ac521186a4db80d0c6190d9b39c4ba547406a718;hpb=dd627e471392375ca7b6dad78a931a8682e06dbe;p=helm.git diff --git a/matita/components/ng_tactics/declarative.ml b/matita/components/ng_tactics/declarative.ml index ac521186a..3a700ba96 100644 --- a/matita/components/ng_tactics/declarative.ml +++ b/matita/components/ng_tactics/declarative.ml @@ -1,14 +1,14 @@ (* Copyright (C) 2019, HELM Team. - * + * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. - * + * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. - * + * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the @@ -18,327 +18,445 @@ * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. - * + * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. - *) +*) +open Continuationals.Stack module Ast = NotationPt open NTactics open NTacStatus type just = [ `Term of NTacStatus.tactic_term | `Auto of NnAuto.auto_params ] -let mk_just = - function - `Auto (l,params) -> distribute_tac (fun status goal -> NnAuto.auto_lowtac - ~params:(l,params) status goal) - | `Term t -> apply_tac t +let mk_just status goal = + function + `Auto (l,params) -> NnAuto.auto_lowtac ~params:(l,params) status goal + | `Term t -> apply_tac t exception NotAProduct exception FirstTypeWrong exception NotEquivalentTypes +let extract_first_goal_from_status status = + let s = status#stack in + match s with + | [] -> fail (lazy "There's nothing to prove") + | (g1, _, k, tag1) :: tl -> + let goals = filter_open g1 in + let (loc::tl) = goals in + let goal = goal_of_loc (loc) in + goal ;; + (* + let (_,_,metasenv,_,_) = status#obj in + match metasenv with + | [] -> fail (lazy "There's nothing to prove") + | (hd,_) :: tl -> hd + *) + let extract_conclusion_type status goal = - let gty = get_goalty status goal in - let ctx = ctx_of gty in - let status,gty = term_of_cic_term status gty ctx in - gty + let gty = get_goalty status goal in + let ctx = ctx_of gty in + let status,gty = term_of_cic_term status gty ctx in + gty ;; let same_type_as_conclusion ty t status goal = - let gty = get_goalty status goal in - let ctx = ctx_of gty in - let status,cicterm = disambiguate status ctx ty `XTNone (*(`XTSome (mk_cic_term ctx t))*) in - let (_,_,metasenv,subst,_) = status#obj in - let status,ty = term_of_cic_term status cicterm ctx in - if NCicReduction.alpha_eq status metasenv subst ctx t ty then - true - else - false + let gty = get_goalty status goal in + let ctx = ctx_of gty in + let status,cicterm = disambiguate status ctx ty `XTNone (*(`XTSome (mk_cic_term ctx t))*) in + let (_,_,metasenv,subst,_) = status#obj in + let status,ty = term_of_cic_term status cicterm ctx in + if NCicReduction.alpha_eq status metasenv subst ctx t ty then + true + else + false ;; let are_convertible ty1 ty2 status goal = - let gty = get_goalty status goal in - let ctx = ctx_of gty in - let status,cicterm1 = disambiguate status ctx ty1 `XTNone (*(`XTSome (mk_cic_term ctx t))*) in - let status,cicterm2 = disambiguate status ctx ty2 `XTNone (*(`XTSome (mk_cic_term ctx t))*) in - NTacStatus.are_convertible status ctx cicterm1 cicterm2 + let gty = get_goalty status goal in + let ctx = ctx_of gty in + let status,cicterm1 = disambiguate status ctx ty1 `XTNone (*(`XTSome (mk_cic_term ctx t))*) in + let status,cicterm2 = disambiguate status ctx ty2 `XTNone (*(`XTSome (mk_cic_term ctx t))*) in + NTacStatus.are_convertible status ctx cicterm1 cicterm2 (* LCF-like tactic that checks whether the conclusion of the sequent of the given goal is a product, checks that -the type of the conclusion's bound variable is the same as t1 and then uses an exact_tac with -\lambda id: t1. ?. If a t2 is given it checks that t1 ~_{\beta} t2 and uses and exact_tac with \lambda id: t2. ? + the type of the conclusion's bound variable is the same as t1 and then uses an exact_tac with + \lambda id: t1. ?. If a t2 is given it checks that t1 ~_{\beta} t2 and uses and exact_tac with \lambda id: t2. ? *) let lambda_abstract_tac id t1 t2 status goal = - match extract_conclusion_type status goal with - | NCic.Prod (_,t,_) -> - if same_type_as_conclusion t1 t status goal then - match t2 with - | None -> - let (_,_,t1) = t1 in - exec (exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (id,None),Some t1),Ast.Implicit - `JustOne)))) status goal - - | Some t2 -> - let status,res = are_convertible t1 t2 status goal in - if res then - let (_,_,t2) = t2 in - exec (exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (id,None),Some t2),Ast.Implicit - `JustOne)))) status goal - else - raise NotEquivalentTypes + match extract_conclusion_type status goal with + | NCic.Prod (_,t,_) -> + if same_type_as_conclusion t1 t status goal then + match t2 with + | None -> + let (_,_,t1) = t1 in + exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (id,None),Some t1),Ast.Implicit + `JustOne))) (*status*) + | Some t2 -> + let status,res = are_convertible t1 t2 status goal in + if res then + let (_,_,t2) = t2 in + exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (id,None),Some t2),Ast.Implicit + `JustOne))) (*status*) else - raise FirstTypeWrong - | _ -> raise NotAProduct + raise NotEquivalentTypes + else + raise FirstTypeWrong + | _ -> raise NotAProduct -let assume name ty eqty = - distribute_tac (fun status goal -> - try lambda_abstract_tac name ty eqty status goal - with - | NotAProduct -> fail (lazy "You can't assume without an universal quantification") - | FirstTypeWrong -> fail (lazy "The assumed type is wrong") - | NotEquivalentTypes -> fail (lazy "The two given types are not equivalent") - ) +let assume name ty eqty (*status*) = +(* let goal = extract_first_goal_from_status status in *) + distribute_tac (fun status goal -> + try exec (lambda_abstract_tac name ty eqty status goal) status goal + with + | NotAProduct -> fail (lazy "You can't assume without an universal quantification") + | FirstTypeWrong -> fail (lazy "The assumed type is wrong") + | NotEquivalentTypes -> fail (lazy "The two given types are not equivalent") + ) ;; -let suppose t1 id t2 = - distribute_tac (fun status goal -> - try lambda_abstract_tac id t1 t2 status goal - with - | NotAProduct -> fail (lazy "You can't suppose without a logical implication") - | FirstTypeWrong -> fail (lazy "The supposed proposition is different from the premise") - | NotEquivalentTypes -> fail (lazy "The two given propositions are not equivalent") - ) +let suppose t1 id t2 (*status*) = +(* let goal = extract_first_goal_from_status status in *) + distribute_tac (fun status goal -> + try exec (lambda_abstract_tac id t1 t2 status goal) status goal + with + | NotAProduct -> fail (lazy "You can't suppose without a logical implication") + | FirstTypeWrong -> fail (lazy "The supposed proposition is different from the premise") + | NotEquivalentTypes -> fail (lazy "The two given propositions are not equivalent") + ) ;; let assert_tac t1 t2 status goal continuation = - let t = extract_conclusion_type status goal in - if same_type_as_conclusion t1 t status goal then - match t2 with - | None -> exec continuation status goal - | Some t2 -> - let status,res = are_convertible t1 t2 status goal in - if res then - exec continuation status goal - else - raise NotEquivalentTypes + let t = extract_conclusion_type status goal in + if same_type_as_conclusion t1 t status goal then + match t2 with + | None -> continuation + | Some t2 -> + let status,res = are_convertible t1 t2 status goal in + if res then continuation + else + raise NotEquivalentTypes + else + raise FirstTypeWrong + +let mustdot status = + let s = status#stack in + match s with + | [] -> fail (lazy "No goals to dot") + | (_, _, k, _) :: tl -> + if List.length k > 0 then + true else - raise FirstTypeWrong + false -let we_need_to_prove t id t1 = - distribute_tac (fun status goal -> - match id with - | None -> - ( - match t1 with - | None -> (* We need to prove t *) - ( - try - assert_tac t None status goal id_tac - with - | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") - ) - | Some t1 -> (* We need to prove t or equivalently t1 *) - ( - try - assert_tac t (Some t1) status goal (change_tac ~where:("",0,(None,[],Some Ast.UserInput)) ~with_what:t1) - with - | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") - | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") - ) - ) - | Some id -> - ( - match t1 with - | None -> (* We need to prove t (id) *) - exec (block_tac [cut_tac t; branch_tac ~force:false; shift_tac; intro_tac id; - (*merge_tac*)]) status goal - | Some t1 -> (* We need to prove t (id) or equivalently t1 *) - exec (block_tac [cut_tac t; branch_tac ~force:false; change_tac ~where:("",0,(None,[],Some Ast.UserInput)) - ~with_what:t1; shift_tac; intro_tac id; merge_tac]) status goal - ) - ) +let bydone just status = + let goal = extract_first_goal_from_status status in + let mustdot = mustdot status in +(* + let goal,mustdot = + let s = status#stack in + match s with + | [] -> fail (lazy "Invalid use of done") + | (g1, _, k, tag1) :: tl -> + let goals = filter_open g1 in + let (loc::tl) = goals in + let goal = goal_of_loc (loc) in + if List.length k > 0 then + goal,true + else + goal,false + in + + *) +(* + let goals = filter_open g1 in + let (loc::tl) = goals in + let goal = goal_of_loc (loc) in + if tag1 == `BranchTag then + if List.length (shift_goals s) > 0 then (* must simply shift *) + ( + prerr_endline (pp status#stack); + prerr_endline "Head goals:"; + List.map (fun goal -> prerr_endline (string_of_int goal)) (head_goals status#stack); + prerr_endline "Shift goals:"; + List.map (fun goal -> prerr_endline (string_of_int goal)) (shift_goals status#stack); + prerr_endline "Open goals:"; + List.map (fun goal -> prerr_endline (string_of_int goal)) (open_goals status#stack); + if tag2 == `BranchTag && g2 <> [] then + goal,true,false,false + else if tag2 == `BranchTag then + goal,false,true,true + else + goal,false,true,false + ) + else + ( + if tag2 == `BranchTag then + goal,false,true,true + else + goal,false,true,false + ) + else + goal,false,false,false (* It's a strange situation, there's is an underlying level on the + stack but the current one was not created by a branch? Should be + an error *) + | (g, _, _, tag) :: [] -> + let (loc::tl) = filter_open g in + let goal = goal_of_loc (loc) in + if tag == `BranchTag then +(* let goals = filter_open g in *) + goal,false,true,false + else + goal,false,false,false + in + *) + let l = [mk_just status goal just] in + let l = + if mustdot then List.append l [dot_tac] else l + in + (* + let l = + if mustmerge then List.append l [merge_tac] else l + in + let l = + if mustmergetwice then List.append l [merge_tac] else l + in + *) + block_tac l status +(* + let (_,_,metasenv,subst,_) = status#obj in + let goal,last = + match metasenv with + | [] -> fail (lazy "There's nothing to prove") + | (_,_) :: (hd,_) :: tl -> hd,false + | (hd,_) :: tl -> hd,true + in + if last then + mk_just status goal just status + else + block_tac [ mk_just status goal just; shift_tac ] status +*) ;; -let by_just_we_proved just ty id ty' = - distribute_tac (fun status goal -> - let just = mk_just just in - match id with - | None -> - (match ty' with - | None -> (* just we proved P done *) - ( - try - assert_tac ty None status goal just - with - | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") - | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") - ) - | Some ty' -> (* just we proved P that is equivalent to P' done *) - ( - try - assert_tac ty' (Some ty) status goal (block_tac [change_tac - ~where:("",0,(None,[],Some Ast.UserInput)) ~with_what:ty; just]) - with - | FirstTypeWrong -> fail (lazy "The second proposition is not the same as the conclusion") - | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") - ) - ) - | Some id -> - ( - match ty' with - | None -> exec (block_tac [cut_tac ty; branch_tac; just; shift_tac; intro_tac - id; merge_tac ]) status goal - | Some ty' -> exec (block_tac [cut_tac ty; branch_tac; just; shift_tac; intro_tac - id; change_tac ~where:("",0,(None,[id,Ast.UserInput],None)) - ~with_what:ty'; merge_tac]) status goal - ) +let we_need_to_prove t id t1 status = + let goal = extract_first_goal_from_status status in + match id with + | None -> + ( + match t1 with + | None -> (* We need to prove t *) + ( + try assert_tac t None status goal (id_tac status) + with + | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") + ) + | Some t1 -> (* We need to prove t or equivalently t1 *) + ( + try assert_tac t (Some t1) status goal (change_tac ~where:("",0,(None,[],Some + Ast.UserInput)) ~with_what:t1 status) + with + | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") + | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") + ) + ) + | Some id -> + ( + match t1 with + (* We need to prove t (id) *) + | None -> block_tac [cut_tac t; branch_tac; shift_tac; intro_tac id; merge_tac; + dot_tac + ] status + (* We need to prove t (id) or equivalently t1 *) + | Some t1 -> block_tac [cut_tac t; branch_tac ; change_tac ~where:("",0,(None,[],Some + Ast.UserInput)) + ~with_what:t1; shift_tac; intro_tac id; merge_tac; + dot_tac + ] + status ) ;; -let thesisbecomes t1 t2 = we_need_to_prove t1 None t2 ;; +let by_just_we_proved just ty id ty' (*status*) = + distribute_tac (fun status goal -> + let wrappedjust = just in + let just = mk_just status goal just in + match id with + | None -> + (match ty' with + | None -> (* just we proved P done *) + ( + try + assert_tac ty None status goal (exec (bydone wrappedjust) status goal) + with + | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") + | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") + ) + | Some ty' -> (* just we proved P that is equivalent to P' done *) + ( + try + assert_tac ty' (Some ty) status goal (exec (block_tac [change_tac + ~where:("",0,(None,[],Some Ast.UserInput)) ~with_what:ty; bydone + wrappedjust]) status goal) + with + | FirstTypeWrong -> fail (lazy "The second proposition is not the same as the conclusion") + | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") + ) + ) + | Some id -> + ( + match ty' with + | None -> exec (block_tac [cut_tac ty; branch_tac; just; shift_tac; intro_tac + id; merge_tac ]) status goal + | Some ty' -> exec (block_tac [cut_tac ty; branch_tac; just; shift_tac; intro_tac + id; change_tac ~where:("",0,(None,[id,Ast.UserInput],None)) + ~with_what:ty'; merge_tac]) status goal + ) + ) +;; -let bydone just = - mk_just just +let thesisbecomes t1 t2 status = we_need_to_prove t1 None t2 status ;; -let existselim just id1 t1 t2 id2 = +let existselim just id1 t1 t2 id2 (*status*) = + distribute_tac (fun status goal -> let (_,_,t1) = t1 in let (_,_,t2) = t2 in - let just = mk_just just in - block_tac [ - cut_tac ("",0,(Ast.Appl [Ast.Ident ("ex",None); t1; Ast.Binder (`Lambda,(Ast.Ident - (id1,None), Some t1),t2)])); - branch_tac ~force:false; - just; - shift_tac; - case1_tac "_"; - intros_tac ~names_ref:(ref []) [id1;id2]; - merge_tac - ] + let just = mk_just status goal just in + exec (block_tac [ + cut_tac ("",0,(Ast.Appl [Ast.Ident ("ex",None); t1; Ast.Binder (`Lambda,(Ast.Ident + (id1,None), Some t1),t2)])); + branch_tac ~force:false; + just; + shift_tac; + case1_tac "_"; + intros_tac ~names_ref:(ref []) [id1;id2]; + merge_tac + ]) status goal + ) +;; -let andelim just t1 id1 t2 id2 = +let andelim just t1 id1 t2 id2 (*status*) = +(* let goal = extract_first_goal_from_status status in *) + distribute_tac (fun status goal -> let (_,_,t1) = t1 in let (_,_,t2) = t2 in - let just = mk_just just in - block_tac [ - cut_tac ("",0,(Ast.Appl [Ast.Ident ("And",None); t1 ; t2])); - branch_tac ~force:false; - just; - shift_tac; - case1_tac "_"; - intros_tac ~names_ref:(ref []) [id1;id2]; - merge_tac - ] + let just = mk_just status goal just in + exec (block_tac [ + cut_tac ("",0,(Ast.Appl [Ast.Ident ("And",None); t1 ; t2])); + branch_tac ~force:false; + just; + shift_tac; + case1_tac "_"; + intros_tac ~names_ref:(ref []) [id1;id2]; + merge_tac + ]) status goal + ) ;; +let type_of_tactic_term status ctx t = + let status,cicterm = disambiguate status ctx t `XTNone in + let (_,cicty) = typeof status ctx cicterm in + cicty - -let rewritingstep lhs rhs just last_step = fail (lazy "Not implemented"); - (* - let aux ((proof,goal) as status) = - let (curi,metasenv,_subst,proofbo,proofty, attrs) = proof in - let _,context,gty = CicUtil.lookup_meta goal metasenv in - let eq,trans = - match LibraryObjects.eq_URI () with - None -> raise (ProofEngineTypes.Fail (lazy "You need to register the default equality first. Please use the \"default\" command")) - | Some uri -> - Cic.MutInd (uri,0,[]), Cic.Const (LibraryObjects.trans_eq_URI ~eq:uri,[]) - in - let ty,_ = - CicTypeChecker.type_of_aux' metasenv context rhs CicUniv.oblivion_ugraph in - let just' = - match just with +let rewritingstep lhs rhs just last_step status = + let goal = extract_first_goal_from_status status in + let cicgty = get_goalty status goal in + let ctx = ctx_of cicgty in + let _,gty = term_of_cic_term status cicgty ctx in + let cicty = type_of_tactic_term status ctx rhs in + let _,ty = term_of_cic_term status cicty ctx in + let just' = (* Extraction of the ""justification"" from the ad hoc justification *) + match just with `Auto (univ, params) -> - let params = - if not (List.exists (fun (k,_) -> k = "timeout") params) then + let params = + if not (List.mem_assoc "timeout" params) then ("timeout","3")::params - else params - in - let params' = - if not (List.exists (fun (k,_) -> k = "paramodulation") params) then + else params + in + let params' = + if not (List.mem_assoc "paramodulation" params) then ("paramodulation","1")::params - else params - in - if params = params' then - Tactics.auto ~dbd ~params:(univ, params) ~automation_cache - else - Tacticals.first - [Tactics.auto ~dbd ~params:(univ, params) ~automation_cache ; - Tactics.auto ~dbd ~params:(univ, params') ~automation_cache] - | `Term just -> Tactics.apply just - | `SolveWith term -> - Tactics.demodulate ~automation_cache ~dbd - ~params:(Some [term], - ["all","1";"steps","1"; "use_context","false"]) - | `Proof -> - Tacticals.id_tac + else params + in + if params = params' then NnAuto.auto_lowtac ~params:(univ, params) status goal + else + first_tac [NnAuto.auto_lowtac ~params:(univ, params) status goal; NnAuto.auto_lowtac + ~params:(univ, params') status goal] + | `Term just -> apply_tac just + | `SolveWith term -> NnAuto.demod_tac ~params:(Some [term], ["all","1";"steps","1"; "use_ctx","false"]) + | `Proof -> id_tac in - let plhs,prhs,prepare = + let plhs,prhs,prepare = match lhs with - None -> - let plhs,prhs = - match gty with - Cic.Appl [_;_;plhs;prhs] -> plhs,prhs - | _ -> assert false - in - plhs,prhs, - (fun continuation -> - ProofEngineTypes.apply_tactic continuation status) - | Some (None,lhs) -> - let plhs,prhs = - match gty with - Cic.Appl [_;_;plhs;prhs] -> plhs,prhs - | _ -> assert false - in - (*CSC: manca check plhs convertibile con lhs *) - plhs,prhs, - (fun continuation -> - ProofEngineTypes.apply_tactic continuation status) - | Some (Some name,lhs) -> - let newmeta = CicMkImplicit.new_meta metasenv [] in - let irl = - CicMkImplicit.identity_relocation_list_for_metavariable context in - let plhs = lhs in - let prhs = Cic.Meta(newmeta,irl) in - plhs,prhs, - (fun continuation -> - let metasenv = (newmeta, context, ty)::metasenv in - let mk_fresh_name_callback = - fun metasenv context _ ~typ -> - FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv context + None -> (* = E2 *) + let plhs,prhs = + match gty with (* Extracting the lhs and rhs of the previous equality *) + NCic.Appl [_;_;plhs;prhs] -> plhs,prhs + | _ -> fail (lazy "You are not building an equaility chain") + in + plhs,prhs, + (fun continuation -> continuation status) + | Some (None,lhs) -> (* conclude *) + let plhs,prhs = + match gty with + NCic.Appl [_;_;plhs;prhs] -> plhs,prhs + | _ -> fail (lazy "You are not building an equaility chain") + in + (*TODO*) + (*CSC: manca check plhs convertibile con lhs *) + plhs,prhs, + (fun continuation -> continuation status) + | Some (Some name,lhs) -> (* obtain *) + fail (lazy "Not implemented") + (* + let plhs = lhs in + let prhs = Cic.Meta(newmeta,irl) in + plhs,prhs, + (fun continuation -> + let metasenv = (newmeta, ctx, ty)::metasenv in + let mk_fresh_name_callback = + fun metasenv ctx _ ~typ -> + FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv ctx (Cic.Name name) ~typ - in - let proof = curi,metasenv,_subst,proofbo,proofty, attrs in - let proof,goals = - ProofEngineTypes.apply_tactic - (Tacticals.thens + in + let proof = curi,metasenv,_subst,proofbo,proofty, attrs in + let proof,goals = + ProofEngineTypes.apply_tactic + (Tacticals.thens ~start:(Tactics.cut ~mk_fresh_name_callback - (Cic.Appl [eq ; ty ; lhs ; prhs])) + (Cic.Appl [eq ; ty ; lhs ; prhs])) ~continuations:[Tacticals.id_tac ; continuation]) (proof,goal) - in - let goals = - match just,goals with - `Proof, [g1;g2;g3] -> [g2;g3;newmeta;g1] - | _, [g1;g2] -> [g2;newmeta;g1] - | _, l -> - prerr_endline (String.concat "," (List.map string_of_int l)); - prerr_endline (CicMetaSubst.ppmetasenv [] metasenv); - assert false - in - proof,goals) - in - let continuation = - if last_step then + in + let goals = + match just,goals with + `Proof, [g1;g2;g3] -> [g2;g3;newmeta;g1] + | _, [g1;g2] -> [g2;newmeta;g1] + | _, l -> + prerr_endline (String.concat "," (List.map string_of_int l)); + prerr_endline (CicMetaSubst.ppmetasenv [] metasenv); + assert false + in + proof,goals) + *) + in + let continuation = + if last_step then (*CSC:manca controllo sul fatto che rhs sia convertibile con prhs*) - just' - else - Tacticals.thens - ~start:(Tactics.apply ~term:(Cic.Appl [trans;ty;plhs;rhs;prhs])) - ~continuations:[just' ; Tacticals.id_tac] - in - prepare continuation - in - ProofEngineTypes.mk_tactic aux + let todo = [just'] in + let todo = if mustdot status then List.append todo [dot_tac] else todo + in + block_tac todo + else + let (_,_,rhs) = rhs in + block_tac [apply_tac ("",0,Ast.Appl [Ast.Ident ("trans_eq",None); Ast.NCic ty; Ast.NCic plhs; + rhs; Ast.NCic prhs]); branch_tac; just'; merge_tac] + in + prepare continuation ;; - *) + +let print_stack status = prerr_endline ("PRINT STACK: " ^ (pp status#stack)); id_tac status ;; + +(* vim: ts=2: sw=0: et: + * *)