X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fcomponents%2Fng_tactics%2Fdeclarative.ml;h=b01f4259da6bf0a37aad09fc8970cfe7869b4825;hb=9ab5bcc58aa62e4ded71fd64cc5a4ea562195103;hp=532ffbb3767b983780b5e42140677e72a2294c9d;hpb=b6ceb877c05d27705ef163488aee38e60a86886c;p=helm.git diff --git a/matita/components/ng_tactics/declarative.ml b/matita/components/ng_tactics/declarative.ml index 532ffbb37..b01f4259d 100644 --- a/matita/components/ng_tactics/declarative.ml +++ b/matita/components/ng_tactics/declarative.ml @@ -1,14 +1,14 @@ (* Copyright (C) 2019, HELM Team. - * + * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. - * + * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. - * + * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the @@ -18,13 +18,518 @@ * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. - * + * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. - *) +*) +open Continuationals.Stack module Ast = NotationPt open NTactics +open NTacStatus + +type just = [ `Term of NTacStatus.tactic_term | `Auto of NnAuto.auto_params ] + +let mk_just status goal = + function + `Auto (l,params) -> NnAuto.auto_lowtac ~params:(l,params) status goal + | `Term t -> apply_tac t + +exception NotAProduct +exception FirstTypeWrong +exception NotEquivalentTypes + +let extract_first_goal_from_status status = + let s = status#stack in + match s with + | [] -> fail (lazy "There's nothing to prove") + | (g1, _, k, tag1) :: tl -> + let goals = filter_open g1 in + let (loc::tl) = goals in + let goal = goal_of_loc (loc) in + goal ;; + +let extract_conclusion_type status goal = + let gty = get_goalty status goal in + let ctx = ctx_of gty in + let status,gty = term_of_cic_term status gty ctx in + gty +;; + +let alpha_eq_tacterm_kerterm ty t status goal = + let gty = get_goalty status goal in + let ctx = ctx_of gty in + let status,cicterm = disambiguate status ctx ty `XTNone (*(`XTSome (mk_cic_term ctx t))*) in + let (_,_,metasenv,subst,_) = status#obj in + let status,ty = term_of_cic_term status cicterm ctx in + if NCicReduction.alpha_eq status metasenv subst ctx t ty then + true + else + false +;; + +let are_convertible ty1 ty2 status goal = + let gty = get_goalty status goal in + let ctx = ctx_of gty in + let status,cicterm1 = disambiguate status ctx ty1 `XTNone in + let status,cicterm2 = disambiguate status ctx ty2 `XTNone in + NTacStatus.are_convertible status ctx cicterm1 cicterm2 + +(* LCF-like tactic that checks whether the conclusion of the sequent of the given goal is a product, checks that + the type of the conclusion's bound variable is the same as t1 and then uses an exact_tac with + \lambda id: t1. ?. If a t2 is given it checks that t1 ~_{\beta} t2 and uses and exact_tac with \lambda id: t2. ? +*) +let lambda_abstract_tac id t1 t2 status goal = + match extract_conclusion_type status goal with + | NCic.Prod (_,t,_) -> + if alpha_eq_tacterm_kerterm t1 t status goal then + match t2 with + | None -> + let (_,_,t1) = t1 in + exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (id,None),Some t1),Ast.Implicit + `JustOne))) (*status*) + | Some t2 -> + let status,res = are_convertible t1 t2 status goal in + if res then + let (_,_,t2) = t2 in + exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (id,None),Some t2),Ast.Implicit + `JustOne))) (*status*) + else + raise NotEquivalentTypes + else + raise FirstTypeWrong + | _ -> raise NotAProduct + +let assume name ty eqty = + distribute_tac (fun status goal -> + try exec (lambda_abstract_tac name ty eqty status goal) status goal + with + | NotAProduct -> fail (lazy "You can't assume without an universal quantification") + | FirstTypeWrong -> fail (lazy "The assumed type is wrong") + | NotEquivalentTypes -> fail (lazy "The two given types are not equivalent") + ) +;; + +let suppose t1 id t2 = + distribute_tac (fun status goal -> + try exec (lambda_abstract_tac id t1 t2 status goal) status goal + with + | NotAProduct -> fail (lazy "You can't suppose without a logical implication") + | FirstTypeWrong -> fail (lazy "The supposed proposition is different from the premise") + | NotEquivalentTypes -> fail (lazy "The two given propositions are not equivalent") + ) +;; + +let assert_tac t1 t2 status goal continuation = + let t = extract_conclusion_type status goal in + if alpha_eq_tacterm_kerterm t1 t status goal then + match t2 with + | None -> continuation + | Some t2 -> + let status,res = are_convertible t1 t2 status goal in + if res then continuation + else + raise NotEquivalentTypes + else + raise FirstTypeWrong + +let mustdot status = + let s = status#stack in + match s with + | [] -> fail (lazy "No goals to dot") + | (_, _, k, _) :: tl -> + if List.length k > 0 then + true + else + false + +let bydone just status = + let goal = extract_first_goal_from_status status in + let mustdot = mustdot status in + let l = [mk_just status goal just] in + let l = + if mustdot then List.append l [dot_tac] else l + in + block_tac l status +;; + +let we_need_to_prove t id t1 status = + let goal = extract_first_goal_from_status status in + match id with + | None -> + ( + match t1 with + | None -> (* We need to prove t *) + ( + try assert_tac t None status goal (id_tac status) + with + | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") + ) + | Some t1 -> (* We need to prove t or equivalently t1 *) + ( + try assert_tac t (Some t1) status goal (change_tac ~where:("",0,(None,[],Some + Ast.UserInput)) ~with_what:t1 status) + with + | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") + | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") + ) + ) + | Some id -> + ( + match t1 with + (* We need to prove t (id) *) + | None -> block_tac [cut_tac t; branch_tac; shift_tac; intro_tac id; merge_tac; + dot_tac + ] status + (* We need to prove t (id) or equivalently t1 *) + | Some t1 -> block_tac [cut_tac t; branch_tac ; change_tac ~where:("",0,(None,[],Some + Ast.UserInput)) + ~with_what:t1; shift_tac; intro_tac id; merge_tac; + dot_tac + ] + status + ) +;; + +let by_just_we_proved just ty id ty' status = + let goal = extract_first_goal_from_status status in + let wrappedjust = just in + let just = mk_just status goal just in + match id with + | None -> + (match ty' with + | None -> (* just we proved P done *) + ( + try + assert_tac ty None status goal (bydone wrappedjust status) + with + | FirstTypeWrong -> fail (lazy "The given proposition is not the same as the conclusion") + | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") + ) + | Some ty' -> (* just we proved P that is equivalent to P' done *) + ( + try + assert_tac ty' None status goal (block_tac [change_tac ~where:("",0,(None,[],Some + Ast.UserInput)) + ~with_what:ty; bydone wrappedjust] + status ) + with + | FirstTypeWrong -> fail (lazy "The second proposition is not the same as the conclusion") + | NotEquivalentTypes -> fail (lazy "The given propositions are not equivalent") + ) + ) + | Some id -> + ( + match ty' with + | None -> block_tac [cut_tac ty; branch_tac; just; shift_tac; intro_tac id; merge_tac ] status + | Some ty' -> block_tac [cut_tac ty; branch_tac; just; shift_tac; intro_tac id; change_tac + ~where:("",0,(None,[id,Ast.UserInput],None)) ~with_what:ty'; + merge_tac] status + ) +;; + +let existselim just id1 t1 t2 id2 = + distribute_tac (fun status goal -> + let (_,_,t1) = t1 in + let (_,_,t2) = t2 in + let just = mk_just status goal just in + exec (block_tac [ + cut_tac ("",0,(Ast.Appl [Ast.Ident ("ex",None); t1; Ast.Binder (`Lambda,(Ast.Ident + (id1,None), Some t1),t2)])); + branch_tac ~force:false; + just; + shift_tac; + case1_tac "_"; + intros_tac ~names_ref:(ref []) [id1;id2]; + merge_tac + ]) status goal + ) +;; + +let andelim just t1 id1 t2 id2 = + distribute_tac (fun status goal -> + let (_,_,t1) = t1 in + let (_,_,t2) = t2 in + let just = mk_just status goal just in + exec (block_tac [ + cut_tac ("",0,(Ast.Appl [Ast.Ident ("And",None); t1 ; t2])); + branch_tac ~force:false; + just; + shift_tac; + case1_tac "_"; + intros_tac ~names_ref:(ref []) [id1;id2]; + merge_tac + ]) status goal + ) +;; + +let type_of_tactic_term status ctx t = + let status,cicterm = disambiguate status ctx t `XTNone in + let (_,cicty) = typeof status ctx cicterm in + cicty + +let swap_first_two_goals_tac status = + let gstatus = + match status#stack with + | [] -> assert false + | (g,t,k,tag) :: s -> + match g with + | (loc1) :: (loc2) :: tl -> + ([loc2;loc1] @+ tl,t,k,tag) :: s + | _ -> assert false + in + status#set_stack gstatus + +let thesisbecomes t1 t2 = we_need_to_prove t1 None t2 +;; + +let obtain id t1 status = + let goal = extract_first_goal_from_status status in + let cicgty = get_goalty status goal in + let ctx = ctx_of cicgty in + let cicty = type_of_tactic_term status ctx t1 in + let _,ty = term_of_cic_term status cicty ctx in + let (_,_,t1) = t1 in + block_tac [ cut_tac ("",0,(Ast.Appl [Ast.Ident ("eq",None); Ast.NCic ty; t1; Ast.Implicit + `JustOne])); + swap_first_two_goals_tac; + branch_tac; shift_tac; shift_tac; intro_tac id; merge_tac; dot_tac; + ] + status +;; + +let conclude t1 = + distribute_tac (fun status goal -> + let cicgty = get_goalty status goal in + let ctx = ctx_of cicgty in + let _,gty = term_of_cic_term status cicgty ctx in + match gty with + NCic.Appl [_;_;plhs;_] -> + if alpha_eq_tacterm_kerterm t1 plhs status goal then + exec id_tac status goal + else + fail (lazy "The given conclusion is different from the left-hand side of the current conclusion") + | _ -> fail (lazy "Your conclusion needs to be an equality") + ) +;; + +let rewritingstep rhs just last_step status = + let goal = extract_first_goal_from_status status in + let cicgty = get_goalty status goal in + let ctx = ctx_of cicgty in + let _,gty = term_of_cic_term status cicgty ctx in + let cicty = type_of_tactic_term status ctx rhs in + let _,ty = term_of_cic_term status cicty ctx in + let just' = (* Extraction of the ""justification"" from the ad hoc justification *) + match just with + `Auto (univ, params) -> + let params = + if not (List.mem_assoc "timeout" params) then + ("timeout","3")::params + else params + in + let params' = + if not (List.mem_assoc "paramodulation" params) then + ("paramodulation","1")::params + else params + in + if params = params' then NnAuto.auto_lowtac ~params:(univ, params) status goal + else + first_tac [NnAuto.auto_lowtac ~params:(univ, params) status goal; NnAuto.auto_lowtac + ~params:(univ, params') status goal] + | `Term just -> apply_tac just + | `SolveWith term -> NnAuto.demod_tac ~params:(Some [term], ["all","1";"steps","1"; "use_ctx","false"]) + | `Proof -> id_tac + in + let plhs,prhs,prepare = + match gty with (* Extracting the lhs and rhs of the previous equality *) + NCic.Appl [_;_;plhs;prhs] -> plhs,prhs,(fun continuation -> continuation status) + | _ -> fail (lazy "You are not building an equaility chain") + in + let continuation = + if last_step then + (*CSC:manca controllo sul fatto che rhs sia convertibile con prhs*) + let todo = [just'] in + let todo = if mustdot status then List.append todo [dot_tac] else todo + in + block_tac todo + else + let (_,_,rhs) = rhs in + block_tac [apply_tac ("",0,Ast.Appl [Ast.Ident ("trans_eq",None); Ast.NCic ty; Ast.NCic plhs; + rhs; Ast.NCic prhs]); branch_tac; just'; merge_tac] + in + prepare continuation +;; + +let rec pp_metasenv_names (metasenv:NCic.metasenv) = + match metasenv with + [] -> "" + | hd :: tl -> + let n,conj = hd in + let meta_attrs,_,_ = conj in + let rec find_name_aux meta_attrs = match meta_attrs with + [] -> "Anonymous" + | hd :: tl -> match hd with + `Name n -> n + | _ -> find_name_aux tl + in + let name = find_name_aux meta_attrs + in + "[Goal: " ^ (string_of_int n) ^ ", Name: " ^ name ^ "]; " ^ (pp_metasenv_names tl) +;; + +let print_goals_names_tac s (status:#NTacStatus.tac_status) = + let (_,_,metasenv,_,_) = status#obj in + prerr_endline (s ^" -> Metasenv: " ^ (pp_metasenv_names metasenv)); status + +let add_names_to_goals_tac (cl:NCic.constructor list ref) (status:#NTacStatus.tac_status) = + let (olduri,oldint,metasenv,oldsubst,oldkind) = status#obj in + let rec remove_name_from_metaattrs mattrs = + match mattrs with + [] -> [] + | hd :: tl -> + match hd with + `Name n -> remove_name_from_metaattrs tl + | _ as it -> it :: (remove_name_from_metaattrs tl) + in + let rec add_names_to_metasenv cl metasenv = + match cl with + [] -> metasenv + | hd :: tl -> + let _,consname,_ = hd + in match metasenv with + [] -> [] + | mhd :: mtl -> + let gnum,conj = mhd in + let mattrs,ctx,t = conj in + let mattrs = [`Name consname] @ (remove_name_from_metaattrs mattrs) + in + let newconj = mattrs,ctx,t in + let newmeta = gnum,newconj in + newmeta :: (add_names_to_metasenv tl mtl) + in + let newmetasenv = add_names_to_metasenv !cl metasenv in + status#set_obj (olduri,oldint,newmetasenv,oldsubst,oldkind) + +let we_proceed_by_induction_on t1 t2 status = + let goal = extract_first_goal_from_status status in + let txt,len,t1 = t1 in + let t1 = txt, len, Ast.Appl [t1; Ast.Implicit `Vector] in + let indtyinfo = ref None in + let sort = ref (NCic.Rel 1) in + let cl = ref [] in + try + assert_tac t2 None status goal (block_tac [ + analyze_indty_tac ~what:t1 indtyinfo; + sort_of_goal_tac sort; + (fun status -> + let ity = HExtlib.unopt !indtyinfo in + let NReference.Ref (uri, _) = ref_of_indtyinfo ity in + let name = + NUri.name_of_uri uri ^ "_" ^ + snd (NCicElim.ast_of_sort + (match !sort with NCic.Sort x -> x | _ -> assert false)) + in + let eliminator = + let l = [Ast.Ident (name,None); Ast.Implicit `JustOne] in + (* Generating as many implicits as open goals *) + let l = l @ HExtlib.mk_list (Ast.Implicit `JustOne) ity.consno in + let _,_,t1 = t1 in + let l = l @ [t1] in + Ast.Appl l + in + cl := ity.cl; + exact_tac ("",0,eliminator) status); + add_names_to_goals_tac cl; dot_tac] status) + with + | FirstTypeWrong -> fail (lazy "What you want to prove is different from the conclusion") +;; + +let we_proceed_by_cases_on ((txt,len,ast1) as t1) t2 status = + let goal = extract_first_goal_from_status status in + let npt1 = txt, len, Ast.Appl [ast1; Ast.Implicit `Vector] in + let indtyinfo = ref None in + let cl = ref [] in + try + assert_tac t2 None status goal (block_tac [ + analyze_indty_tac ~what:npt1 indtyinfo; + cases_tac ~what:t1 ~where:("",0,(None,[],Some + Ast.UserInput)); + print_goals_names_tac "Pre Adding"; + ( + fun status -> + let ity = HExtlib.unopt !indtyinfo in + cl := ity.cl; add_names_to_goals_tac cl status + ); + print_goals_names_tac "Post Adding"; + dot_tac] status) + with + | FirstTypeWrong -> fail (lazy "What you want to prove is different from the conclusion") +;; + +let byinduction t1 id = suppose t1 id None ;; + +let name_of_conj conj = + let mattrs,_,_ = conj in + let rec search_name mattrs = + match mattrs with + [] -> "Anonymous" + | hd::tl -> + match hd with + `Name n -> n + | _ -> search_name tl + in + search_name mattrs + +let rec loc_of_goal goal l = + match l with + [] -> fail (lazy "Reached the end") + | hd :: tl -> + let _,sw = hd in + let g = goal_of_switch sw in + if g = goal then hd + else loc_of_goal goal tl +;; + +let focus_on_case_tac case status = + let goal = extract_first_goal_from_status status in + let (_,_,metasenv,_,_) = status#obj in + let rec goal_of_case case metasenv = + match metasenv with + [] -> fail (lazy "The given case does not exist") + | (goal,conj) :: tl -> + if name_of_conj conj = case then goal + else goal_of_case case tl + in + let goal_to_focus = goal_of_case case metasenv in + let gstatus = + match status#stack with + [] -> fail (lazy "There is nothing to prove") + | (g,t,k,tag) :: s -> + let loc = loc_of_goal goal_to_focus k in + let curloc = loc_of_goal goal g in + (((g @- [curloc]) @+ [loc]),t,([curloc] @+ (k @- [loc])),tag) :: s + in status#set_stack gstatus + +let case id l status = + let goal = extract_first_goal_from_status status in + let (_,_,metasenv,_,_) = status#obj in + let conj = NCicUtils.lookup_meta goal metasenv in + let name = name_of_conj conj in + let continuation = + let rec aux l = + match l with + [] -> [id_tac] + | (id,ty)::tl -> + (try_tac (assume id ("",0,ty) None)) :: (aux tl) + in + aux l + in + if name = id then block_tac continuation status + else block_tac ([focus_on_case_tac id] @ continuation) status +;; + +let print_stack status = prerr_endline ("PRINT STACK: " ^ (pp status#stack)); id_tac status ;; -let assume name ty = - exact_tac ("",0,(Ast.Binder (`Lambda,(Ast.Ident (name,None),Some ty),Ast.Implicit `JustOne))) +(* vim: ts=2: sw=0: et: + * *)