X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fexcedence.ma;h=950639fed11a8e0c0cc6e7b6f3fc53981bd8fcbd;hb=fbfc3e402894a89b22f57e12b53e090f843a690a;hp=4931e70d2ab2476131c78fac4d845dcbc4951df4;hpb=55891f80b4f14251dfd5c9111f22f5edcbde2e11;p=helm.git diff --git a/matita/dama/excedence.ma b/matita/dama/excedence.ma index 4931e70d2..950639fed 100644 --- a/matita/dama/excedence.ma +++ b/matita/dama/excedence.ma @@ -21,7 +21,7 @@ include "constructive_higher_order_relations.ma". record excedence : Type ≝ { exc_carr:> Type; - exc_relation: exc_carr → exc_carr → Prop; + exc_relation: exc_carr → exc_carr → Type; (* Big bug: era in Prop!!! *) exc_coreflexive: coreflexive ? exc_relation; exc_cotransitive: cotransitive ? exc_relation }. @@ -63,7 +63,7 @@ intros (E); apply (mk_apartness E (apart E)); intros (H1); apply (H x); cases H1; assumption; |2: unfold; intros(x y H); cases H; clear H; [right|left] assumption; |3: intros (E); unfold; cases E (T f _ cTf); simplify; intros (x y z Axy); - cases Axy (H); lapply (cTf ? ? z H) as H1; cases H1; clear Axy H1; + cases Axy (H H); lapply (cTf ? ? z H) as H1; cases H1; clear Axy H1; [left; left|right; left|right; right|left; right] assumption] qed. @@ -84,11 +84,18 @@ intros (E); unfold; intros (x y Exy); unfold; unfold; intros (Ayx); apply Exy; apply ap_symmetric; assumption; qed. -lemma eq_transitive: ∀E.transitive ? (eq E). +lemma eq_symmetric_:∀E:apartness.∀x,y:E.x ≈ y → y ≈ x := eq_symmetric. + +coercion cic:/matita/excedence/eq_symmetric_.con. + +lemma eq_transitive_: ∀E.transitive ? (eq E). (* bug. intros k deve fare whd quanto basta *) intros 6 (E x y z Exy Eyz); intro Axy; cases (ap_cotransitive ???y Axy); [apply Exy|apply Eyz] assumption. qed. + +lemma eq_transitive:∀E:apartness.∀x,y,z:E.x ≈ y → y ≈ z → x ≈ z ≝ eq_transitive_. + (* BUG: vedere se ricapita *) lemma le_antisymmetric: ∀E.antisymmetric ? (le E) (eq ?). intros 5 (E x y Lxy Lyx); intro H; @@ -120,12 +127,14 @@ intros (E a b Lab); cases Lab (LEab Aab); cases Aab (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) qed. +(* CSC: lo avevi gia' dimostrato; ho messo apply! *) theorem le_le_to_eq: ∀E:excedence.∀x,y:E. x ≤ y → y ≤ x → x ≈ y. -intros 6 (E x y L1 L2 H); cases H; [apply (L1 H1)|apply (L2 H1)] +apply le_antisymmetric; qed. +(* CSC: perche' quel casino: bastava intros; assumption! *) lemma unfold_apart: ∀E:excedence. ∀x,y:E. x ≰ y ∨ y ≰ x → x # y. -unfold apart_of_excedence; unfold apart; simplify; intros; assumption; +intros; assumption; qed. lemma le_rewl: ∀E:excedence.∀z,y,x:E. x ≈ y → x ≤ z → y ≤ z. @@ -137,3 +146,13 @@ lemma le_rewr: ∀E:excedence.∀z,y,x:E. x ≈ y → z ≤ x → z ≤ y. intros (E z y x Exy Lxz); apply (le_transitive ???? Lxz); intro Xyz; apply Exy; apply unfold_apart; left; assumption; qed. + +lemma ap_rewl: ∀A:apartness.∀x,z,y:A. x ≈ y → y # z → x # z. +intros (A x z y Exy Ayz); cases (ap_cotransitive ???x Ayz); [2:assumption] +cases (Exy (ap_symmetric ??? a)); +qed. + +lemma ap_rewr: ∀A:apartness.∀x,z,y:A. x ≈ y → z # y → z # x. +intros (A x z y Exy Azy); apply ap_symmetric; apply (ap_rewl ???? Exy); +apply ap_symmetric; assumption; +qed. \ No newline at end of file