X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fexcedence.ma;h=c2a5ffd4fde20049391060de83b85f2cd22cf310;hb=952ced6c96e98fa678c59729d18975f9a376623e;hp=950639fed11a8e0c0cc6e7b6f3fc53981bd8fcbd;hpb=fbfc3e402894a89b22f57e12b53e090f843a690a;p=helm.git diff --git a/matita/dama/excedence.ma b/matita/dama/excedence.ma index 950639fed..c2a5ffd4f 100644 --- a/matita/dama/excedence.ma +++ b/matita/dama/excedence.ma @@ -21,7 +21,7 @@ include "constructive_higher_order_relations.ma". record excedence : Type ≝ { exc_carr:> Type; - exc_relation: exc_carr → exc_carr → Type; (* Big bug: era in Prop!!! *) + exc_relation: exc_carr → exc_carr → Type; exc_coreflexive: coreflexive ? exc_relation; exc_cotransitive: cotransitive ? exc_relation }. @@ -79,22 +79,22 @@ lemma eq_reflexive:∀E. reflexive ? (eq E). intros (E); unfold; intros (x); apply ap_coreflexive; qed. -lemma eq_symmetric:∀E.symmetric ? (eq E). +lemma eq_sym_:∀E.symmetric ? (eq E). intros (E); unfold; intros (x y Exy); unfold; unfold; intros (Ayx); apply Exy; apply ap_symmetric; assumption; qed. -lemma eq_symmetric_:∀E:apartness.∀x,y:E.x ≈ y → y ≈ x := eq_symmetric. +lemma eq_sym:∀E:apartness.∀x,y:E.x ≈ y → y ≈ x := eq_sym_. -coercion cic:/matita/excedence/eq_symmetric_.con. +coercion cic:/matita/excedence/eq_sym.con. -lemma eq_transitive_: ∀E.transitive ? (eq E). +lemma eq_trans_: ∀E.transitive ? (eq E). (* bug. intros k deve fare whd quanto basta *) intros 6 (E x y z Exy Eyz); intro Axy; cases (ap_cotransitive ???y Axy); [apply Exy|apply Eyz] assumption. qed. -lemma eq_transitive:∀E:apartness.∀x,y,z:E.x ≈ y → y ≈ z → x ≈ z ≝ eq_transitive_. +lemma eq_trans:∀E:apartness.∀x,y,z:E.x ≈ y → y ≈ z → x ≈ z ≝ eq_trans_. (* BUG: vedere se ricapita *) lemma le_antisymmetric: ∀E.antisymmetric ? (le E) (eq ?). @@ -127,12 +127,6 @@ intros (E a b Lab); cases Lab (LEab Aab); cases Aab (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) qed. -(* CSC: lo avevi gia' dimostrato; ho messo apply! *) -theorem le_le_to_eq: ∀E:excedence.∀x,y:E. x ≤ y → y ≤ x → x ≈ y. -apply le_antisymmetric; -qed. - -(* CSC: perche' quel casino: bastava intros; assumption! *) lemma unfold_apart: ∀E:excedence. ∀x,y:E. x ≰ y ∨ y ≰ x → x # y. intros; assumption; qed. @@ -155,4 +149,14 @@ qed. lemma ap_rewr: ∀A:apartness.∀x,z,y:A. x ≈ y → z # y → z # x. intros (A x z y Exy Azy); apply ap_symmetric; apply (ap_rewl ???? Exy); apply ap_symmetric; assumption; -qed. \ No newline at end of file +qed. + +lemma exc_rewl: ∀A:excedence.∀x,z,y:A. x ≈ y → y ≰ z → x ≰ z. +intros (A x z y Exy Ayz); elim (exc_cotransitive ???x Ayz); [2:assumption] +cases Exy; right; assumption; +qed. + +lemma exc_rewr: ∀A:excedence.∀x,z,y:A. x ≈ y → z ≰ y → z ≰ x. +intros (A x z y Exy Azy); elim (exc_cotransitive ???x Azy); [assumption] +elim (Exy); left; assumption; +qed.