X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fgroups.ma;h=a35b43d3b9c5dfa27aa8e245f7b69460d93f76c3;hb=b0b85f3cad753caba19e785e09cc10ff8a6c00d9;hp=699bd73fc3286190a3dbcf9ee3c643b0d8b9ce38;hpb=5c0c5980586c1fc530fd304275607dd2f8afeba0;p=helm.git diff --git a/matita/dama/groups.ma b/matita/dama/groups.ma index 699bd73fc..a35b43d3b 100644 --- a/matita/dama/groups.ma +++ b/matita/dama/groups.ma @@ -14,47 +14,36 @@ set "baseuri" "cic:/matita/groups/". -include "higher_order_defs/functions.ma". -include "nat/nat.ma". -include "nat/orders.ma". -include "constructive_connectives.ma". +include "excedence.ma". -definition left_neutral \def λC,op.λe:C. ∀x:C. op e x = x. - -definition right_neutral \def λC,op. λe:C. ∀x:C. op x e=x. - -definition left_inverse \def λC,op.λe:C.λinv:C→C. ∀x:C. op (inv x) x = e. - -definition right_inverse \def λC,op.λe:C.λ inv: C→ C. ∀x:C. op x (inv x)=e. +definition left_neutral ≝ λC:apartness.λop.λe:C. ∀x:C. op e x ≈ x. +definition right_neutral ≝ λC:apartness.λop. λe:C. ∀x:C. op x e ≈ x. +definition left_inverse ≝ λC:apartness.λop.λe:C.λinv:C→C. ∀x:C. op (inv x) x ≈ e. +definition right_inverse ≝ λC:apartness.λop.λe:C.λ inv: C→ C. ∀x:C. op x (inv x) ≈ e. +definition strong_ext ≝ λA:apartness.λop:A→A.∀x,y. op x # op y → x # y. +(* ALLOW DEFINITION WITH SOME METAS *) definition distributive_left ≝ - λA:Type.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f x (g y z) = g (f x y) (f x z). + λA:apartness.λf:A→A→A.λg:A→A→A. + ∀x,y,z. f x (g y z) ≈ g (f x y) (f x z). definition distributive_right ≝ - λA:Type.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f (g x y) z = g (f x z) (f y z). - -record is_abelian_group (C:Type) (plus:C→C→C) (zero:C) (opp:C→C) : Prop \def - { (* abelian additive semigroup properties *) - plus_assoc_: associative ? plus; - plus_comm_: symmetric ? plus; - (* additive monoid properties *) - zero_neutral_: left_neutral ? plus zero; - (* additive group properties *) - opp_inverse_: left_inverse ? plus zero opp - }. - -record abelian_group : Type \def - { carrier:> Type; - plus: carrier → carrier → carrier; - zero: carrier; - opp: carrier → carrier; - ag_abelian_group_properties: is_abelian_group ? plus zero opp - }. + λA:apartness.λf:A→A→A.λg:A→A→A. + ∀x,y,z. f (g x y) z ≈ g (f x z) (f y z). + +record abelian_group : Type ≝ + { carr:> apartness; + plus: carr → carr → carr; + zero: carr; + opp: carr → carr; + plus_assoc: associative ? plus (eq carr); + plus_comm: commutative ? plus (eq carr); + zero_neutral: left_neutral ? plus zero; + opp_inverse: left_inverse ? plus zero opp; + plus_strong_ext: ∀z.strong_ext ? (plus z) +}. -notation "0" with precedence 89 -for @{ 'zero }. +notation "0" with precedence 89 for @{ 'zero }. interpretation "Abelian group zero" 'zero = (cic:/matita/groups/zero.con _). @@ -71,37 +60,57 @@ definition minus ≝ interpretation "Abelian group minus" 'minus a b = (cic:/matita/groups/minus.con _ a b). -theorem plus_assoc: ∀G:abelian_group. associative ? (plus G). - intro; - apply (plus_assoc_ ? ? ? ? (ag_abelian_group_properties G)). +lemma ap_rewl: ∀A:apartness.∀x,z,y:A. x ≈ y → y # z → x # z. +intros (A x z y Exy Ayz); cases (ap_cotransitive ???x Ayz); [2:assumption] +cases (Exy (ap_symmetric ??? a)); qed. - -theorem plus_comm: ∀G:abelian_group. symmetric ? (plus G). - intro; - apply (plus_comm_ ? ? ? ? (ag_abelian_group_properties G)). + +lemma ap_rewr: ∀A:apartness.∀x,z,y:A. x ≈ y → z # y → z # x. +intros (A x z y Exy Azy); apply ap_symmetric; apply (ap_rewl ???? Exy); +apply ap_symmetric; assumption; qed. -theorem zero_neutral: ∀G:abelian_group. left_neutral ? (plus G) 0. - intro; - apply (zero_neutral_ ? ? ? ? (ag_abelian_group_properties G)). +definition ext ≝ λA:apartness.λop:A→A. ∀x,y. x ≈ y → op x ≈ op y. + +lemma strong_ext_to_ext: ∀A:apartness.∀op:A→A. strong_ext ? op → ext ? op. +intros 6 (A op SEop x y Exy); intro Axy; apply Exy; apply SEop; assumption; +qed. + +lemma f_plusl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x+y ≈ x+z. +intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_ext ? x)); +assumption; +qed. + +lemma plus_strong_extr: ∀G:abelian_group.∀z:G.strong_ext ? (λx.x + z). +intros 5 (G z x y A); simplify in A; +lapply (plus_comm ? z x) as E1; lapply (plus_comm ? z y) as E2; +lapply (ap_rewl ???? E1 A) as A1; lapply (ap_rewr ???? E2 A1) as A2; +apply (plus_strong_ext ???? A2); qed. - -theorem opp_inverse: ∀G:abelian_group. left_inverse ? (plus G) 0 (opp G). - intro; - apply (opp_inverse_ ? ? ? ? (ag_abelian_group_properties G)). + +lemma feq_plusr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → y+x ≈ z+x. +intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_extr ? x)); +assumption; +qed. + +lemma fap_plusl: ∀G:abelian_group.∀x,y,z:G. y # z → x+y # x+z. +intros (G x y z Ayz); apply (plus_strong_ext ? (-x)); +apply (ap_rewl ??? ((-x + x) + y)); +[1: apply plus_assoc; +|2: apply (ap_rewr ??? ((-x +x) +z)); + [1: apply plus_assoc; + |2: apply (ap_rewl ??? (0 + y)); + [1: apply (feq_plusr ???? (opp_inverse ??)); + |2: apply (ap_rewl ???? (zero_neutral ? y)); apply (ap_rewr ??? (0 + z)); + [1: apply (feq_plusr ???? (opp_inverse ??)); + |2: apply (ap_rewr ???? (zero_neutral ? z)); assumption;]]]] qed. -lemma cancellationlaw: ∀G:abelian_group.∀x,y,z:G. x+y=x+z → y=z. -intros; -generalize in match (eq_f ? ? (λa.-x +a) ? ? H); -intros; clear H; -rewrite < plus_assoc in H1; -rewrite < plus_assoc in H1; -rewrite > opp_inverse in H1; -rewrite > zero_neutral in H1; -rewrite > zero_neutral in H1; -assumption. -qed. +lemma plus_canc: ∀G:abelian_group.∀x,y,z:G. x+y ≈ x+z → y ≈ z. +intros 6 (G x y z E Ayz); apply E; apply fap_plusl; assumption; +qed. + +(* theorem eq_opp_plus_plus_opp_opp: ∀G:abelian_group.∀x,y:G. -(x+y) = -x + -y. intros; @@ -137,4 +146,6 @@ theorem eq_zero_opp_zero: ∀G:abelian_group.0=-0. rewrite > zero_neutral; reflexivity ]. -qed. \ No newline at end of file +qed. + +*) \ No newline at end of file