X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fintegration_algebras.ma;h=46bebc0e9da6745255d64691b99f5fe6a00eb7e2;hb=f104e234238586ac846881feb30e1b56a509cfd3;hp=94bc002b377d4d019d8463675c67c7f073a87005;hpb=aa863e3c45c682cd47445748275b04f91f35ef75;p=helm.git diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 94bc002b3..46bebc0e9 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -14,199 +14,281 @@ set "baseuri" "cic:/matita/integration_algebras/". -include "higher_order_defs/functions.ma". -include "nat/nat.ma". -include "nat/orders.ma". - -definition left_neutral \def λC,op.λe:C. ∀x:C. op e x = x. - -definition left_inverse \def λC,op.λe:C.λinv:C→C. ∀x:C. op (inv x) x = e. - -record is_abelian_group (C:Type) (plus:C→C→C) (zero:C) (opp:C→C) : Prop \def - { (* abelian additive semigroup properties *) - plus_assoc: associative ? plus; - plus_comm: symmetric ? plus; - (* additive monoid properties *) - zero_neutral: left_neutral ? plus zero; - (* additive group properties *) - opp_inverse: left_inverse ? plus zero opp +include "vector_spaces.ma". + +record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def + { (* abelian semigroup properties *) + l_comm_j: symmetric ? join; + l_associative_j: associative ? join; + l_comm_m: symmetric ? meet; + l_associative_m: associative ? meet; + (* other properties *) + l_adsorb_j_m: ∀f,g. join f (meet f g) = f; + l_adsorb_m_j: ∀f,g. meet f (join f g) = f }. -record is_field (C:Type) (plus:C→C→C) (mult:C→C→C) (zero,one:C) (opp:C→C) - (inv:∀x:C.x ≠ zero →C) : Prop -≝ - { (* abelian group properties *) - abelian_group:> is_abelian_group ? plus zero opp; - (* abelian multiplicative semigroup properties *) - mult_assoc: associative ? mult; - mult_comm: symmetric ? mult; - (* multiplicative monoid properties *) - one_neutral: left_neutral ? mult one; - (* multiplicative group properties *) - inv_inverse: ∀x.∀p: x ≠ zero. mult (inv x p) x = one; - (* ring properties *) - mult_plus_distr: distributive ? mult plus; - (* integral domain *) - not_eq_zero_one: zero ≠ one +record lattice (C:Type) : Type \def + { join: C → C → C; + meet: C → C → C; + l_lattice_properties: is_lattice ? join meet }. -let rec sum (C:Type) (plus:C→C→C) (zero,one:C) (n:nat) on n ≝ - match n with - [ O ⇒ zero - | (S m) ⇒ plus one (sum C plus zero one m) - ]. +definition le \def λC:Type.λL:lattice C.λf,g. meet ? L f g = f. + +interpretation "Lattice le" 'leq a b = + (cic:/matita/integration_algebras/le.con _ _ a b). + +definition lt \def λC:Type.λL:lattice C.λf,g. le ? L f g ∧ f ≠ g. + +interpretation "Lattice lt" 'lt a b = + (cic:/matita/integration_algebras/lt.con _ _ a b). + +definition carrier_of_lattice ≝ + λC:Type.λL:lattice C.C. -record field : Type \def - { carrier:> Type; - plus: carrier → carrier → carrier; - mult: carrier → carrier → carrier; - zero: carrier; - one: carrier; - opp: carrier → carrier; - inv: ∀x:carrier. x ≠ zero → carrier; - field_properties: is_field ? plus mult zero one opp inv +record is_riesz_space (K:ordered_field_ch0) (V:vector_space K) + (L:lattice (Type_OF_vector_space ? V)) +: Prop +\def + { rs_compat_le_plus: ∀f,g,h. le ? L f g → le ? L (f+h) (g+h); + rs_compat_le_times: ∀a:K.∀f. of_le ? 0 a → le ? L 0 f → le ? L 0 (a*f) }. -definition sum_field ≝ - λF:field. sum ? (plus F) (zero F) (one F). - -notation "0" with precedence 89 -for @{ 'zero }. - -interpretation "Field zero" 'zero = - (cic:/matita/integration_algebras/zero.con _). - -notation "1" with precedence 89 -for @{ 'one }. - -interpretation "Field one" 'one = - (cic:/matita/integration_algebras/one.con _). - -interpretation "Field plus" 'plus a b = - (cic:/matita/integration_algebras/plus.con _ a b). - -interpretation "Field mult" 'times a b = - (cic:/matita/integration_algebras/mult.con _ a b). - -interpretation "Field opp" 'uminus a = - (cic:/matita/integration_algebras/opp.con _ a). - -record is_ordered_field_ch0 (C:Type) (plus,mult:C→C→C) (zero,one:C) (opp:C→C) - (inv:∀x:C.x ≠ zero → C) (le:C→C→Prop) : Prop \def - { (* field properties *) - of_is_field:> is_field C plus mult zero one opp inv; - of_mult_compat: ∀a,b. le zero a → le zero b → le zero (mult a b); - of_plus_compat: ∀a,b,c. le a b → le (plus a c) (plus b c); - of_weak_tricotomy : ∀a,b. a≠b → le a b ∨ le b a; - (* 0 characteristics *) - of_char0: ∀n. n > O → sum ? plus zero one n ≠ zero +record riesz_space (K:ordered_field_ch0) : Type \def + { rs_vector_space:> vector_space K; + rs_lattice:> lattice rs_vector_space; + rs_riesz_space_properties: is_riesz_space ? rs_vector_space rs_lattice }. - -record ordered_field_ch0 : Type \def - { of_field:> field; - of_le: of_field → of_field → Prop; - of_ordered_field_properties:> - is_ordered_field_ch0 ? (plus of_field) (mult of_field) (zero of_field) - (one of_field) (opp of_field) (inv of_field) of_le + +definition absolute_value \def λK.λS:riesz_space K.λf.join ? S f (-f). + +(*CSC: qui la notazione non fa capire!!! *) +definition is_riesz_norm ≝ + λR:real.λV:riesz_space R.λnorm:norm ? V. + ∀f,g:V. le ? V (absolute_value ? V f) (absolute_value ? V g) → + of_le R (norm f) (norm g). + +record riesz_norm (R:real) (V:riesz_space R) : Type ≝ + { rn_norm:> norm ? V; + rn_riesz_norm_property: is_riesz_norm ? ? rn_norm }. -interpretation "Ordered field le" 'leq a b = - (cic:/matita/integration_algebras/of_le.con _ a b). - -definition lt \def λF:ordered_field_ch0.λa,b:F.a ≤ b ∧ a ≠ b. +(*CSC: non fa la chiusura delle coercion verso funclass *) +definition rn_function ≝ + λR:real.λV:riesz_space R.λnorm:riesz_norm ? V. + n_function ? ? (rn_norm ? ? norm). -interpretation "Ordered field lt" 'lt a b = - (cic:/matita/integration_algebras/lt.con _ a b). +coercion cic:/matita/integration_algebras/rn_function.con 1. -lemma le_zero_x_to_le_opp_x_zero: ∀F:ordered_field_ch0.∀x:F. 0 ≤ x → -x ≤ 0. - intros; - generalize in match (of_plus_compat ? ? ? ? ? ? ? ? F ? ? (-x) H); intro; - rewrite > (zero_neutral ? ? ? ? F) in H1; - rewrite > (plus_comm ? ? ? ? F) in H1; - rewrite > (opp_inverse ? ? ? ? F) in H1; - assumption. -qed. +(************************** L-SPACES *************************************) + +record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝ + { ls_banach: is_complete ? V (induced_distance ? ? norm); + ls_linear: ∀f,g:V. le ? V 0 f → le ? V 0 g → norm (f+g) = norm f + norm g + }. + +(******************** ARCHIMEDEAN RIESZ SPACES ***************************) -lemma le_x_zero_to_le_zero_opp_x: ∀F:ordered_field_ch0.∀x:F. x ≤ 0 → 0 ≤ -x. +record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop +\def + { ars_archimedean: ∃u.∀n.∀a.∀p:n > O. + le ? S + (absolute_value ? S a) + ((inv ? (sum_field K n) (not_eq_sum_field_zero ? n p))* u) → + a = 0 + }. + +record archimedean_riesz_space (K:ordered_field_ch0) : Type \def + { ars_riesz_space:> riesz_space K; + ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space + }. + +record is_integral (K) (R:archimedean_riesz_space K) (I:R→K) : Prop +\def + { i_positive: ∀f:R. le ? R 0 f → of_le K 0 (I f); + i_linear1: ∀f,g:R. I (f + g) = I f + I g; + i_linear2: ∀f:R.∀k:K. I (k*f) = k*(I f) + }. + +definition is_weak_unit ≝ +(* This definition is by Spitters. He cites Fremlin 353P, but: + 1. that theorem holds only in f-algebras (as in Spitters, but we are + defining it on Riesz spaces) + 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? + λR:real.λV:archimedean_riesz_space R.λunit: V. + ∀x:V. meet x unit = 0 → u = 0. + 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces + only. We pick this definition for now. +*) λR:real.λV:archimedean_riesz_space R.λe:V. + ∀v:V. lt ? V 0 v → lt ? V 0 (meet ? V v e). + +(* Here we are avoiding a construction (the quotient space to define + f=g iff I(|f-g|)=0 *) +record integration_riesz_space (R:real) : Type \def + { irs_archimedean_riesz_space:> archimedean_riesz_space R; + irs_unit: irs_archimedean_riesz_space; + irs_weak_unit: is_weak_unit ? ? irs_unit; + integral: irs_archimedean_riesz_space → R; + irs_integral_properties: is_integral ? ? integral; + irs_limit1: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn.integral (meet ? irs_archimedean_riesz_space f + ((sum_field R n)*irs_unit))) + (integral f); + irs_limit2: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn. + integral (meet ? irs_archimedean_riesz_space f + ((inv ? (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))) + ) * irs_unit))) 0; + irs_quotient_space1: + ∀f,g:irs_archimedean_riesz_space. + integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 → f=g + }. + +definition induced_norm_fun ≝ + λR:real.λV:integration_riesz_space R.λf:V. + integral ? ? (absolute_value ? ? f). + +lemma induced_norm_is_norm: + ∀R:real.∀V:integration_riesz_space R.is_norm ? V (induced_norm_fun ? V). intros; - generalize in match (of_plus_compat ? ? ? ? ? ? ? ? F ? ? (-x) H); intro; - rewrite > (zero_neutral ? ? ? ? F) in H1; - rewrite > (plus_comm ? ? ? ? F) in H1; - rewrite > (opp_inverse ? ? ? ? F) in H1; - assumption. + apply mk_is_norm; + [ apply mk_is_semi_norm; + [ unfold induced_norm_fun; + intros; + apply i_positive; + [ apply (irs_integral_properties ? V) + | (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun; + (* facile *) + elim daemon + | intros; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun in H; + apply irs_quotient_space1; + unfold minus; + rewrite < plus_comm; + rewrite < eq_zero_opp_zero; + rewrite > zero_neutral; + assumption + ]. qed. -(* To be proved for rings only *) -lemma eq_mult_zero_x_zero: ∀F:ordered_field_ch0.∀x:F.0*x=0. +definition induced_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_norm ? ? (induced_norm_fun ? V) (induced_norm_is_norm ? V). + +lemma is_riesz_norm_induced_norm: + ∀R:real.∀V:integration_riesz_space R. + is_riesz_norm ? ? (induced_norm ? V). intros; - generalize in match (zero_neutral ? ? ? ? F 0); intro; - generalize in match (eq_f ? ? (λy.x*y) ? ? H); intro; clear H; - rewrite > (mult_plus_distr ? ? ? ? ? ? ? F) in H1; - generalize in match (eq_f ? ? (λy.-(x*0)+y) ? ? H1); intro; clear H1; - rewrite < (plus_assoc ? ? ? ? F) in H; - rewrite > (opp_inverse ? ? ? ? F) in H; - rewrite > (zero_neutral ? ? ? ? F) in H; - rewrite > (mult_comm ? ? ? ? ? ? ? F) in H; - assumption. + unfold is_riesz_norm; + intros; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon. qed. -(* -lemma eq_opp_x_times_opp_one_x: ∀F:ordered_field_ch0.∀x:F.-x = -1*x. - intros; - -lemma not_eq_x_zero_to_lt_zero_mult_x_x: - ∀F:ordered_field_ch0.∀x:F. x ≠ 0 → 0 < x * x. +definition induced_riesz_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_riesz_norm ? ? (induced_norm ? V) (is_riesz_norm_induced_norm ? V). + +definition distance_induced_by_integral ≝ + λR:real.λV:integration_riesz_space R. + induced_distance ? ? (induced_norm R V). + +definition is_complete_integration_riesz_space ≝ + λR:real.λV:integration_riesz_space R. + is_complete ? ? (distance_induced_by_integral ? V). + +record complete_integration_riesz_space (R:real) : Type ≝ + { cirz_integration_riesz_space:> integration_riesz_space R; + cirz_complete_integration_riesz_space_property: + is_complete_integration_riesz_space ? cirz_integration_riesz_space + }. + +(* now we prove that any complete integration riesz space is an L-space *) + +theorem is_l_space_l_space_induced_by_integral: + ∀R:real.∀V:complete_integration_riesz_space R. + is_l_space ? ? (induced_riesz_norm ? V). intros; - elim (of_weak_tricotomy ? ? ? ? ? ? ? ? F ? ? H); - [ generalize in match (le_x_zero_to_le_zero_opp_x F ? H1); intro; - generalize in match (of_mult_compat ? ? ? ? ? ? ? ? F ? ? H2 H2); intro; -*) + constructor 1; + [ apply cirz_complete_integration_riesz_space_property + | intros; + unfold induced_riesz_norm; + simplify; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ]. +qed. -axiom not_eq_sum_field_zero: ∀F,n. n > O → sum_field F n ≠ 0. +(**************************** f-ALGEBRAS ********************************) -record is_vector_space (K: field) (C:Type) (plus:C→C→C) (zero:C) (opp:C→C) - (mult:K→C→C) : Prop +record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ - { (* abelian group properties *) - vs_abelian_group: is_abelian_group ? plus zero opp; - (* other properties *) - vs_nilpotent: ∀v. mult 0 v = zero; - vs_neutral: ∀v. mult 1 v = v; - vs_distributive: ∀a,b,v. mult (a + b) v = plus (mult a v) (mult b v); - vs_associative: ∀a,b,v. mult (a * b) v = mult a (mult b v) + { (* ring properties *) + a_ring: is_ring V mult one; + (* algebra properties *) + a_associative_left: ∀a,f,g. a * (mult f g) = mult (a * f) g; + a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) }. -record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def - { (* abelian semigroup properties *) - l_comm_j: symmetric ? join; - l_associative_j: associative ? join; - l_comm_m: symmetric ? meet; - l_associative_m: associative ? meet; - (* other properties *) - l_adsorb_j_m: ∀f,g. join f (meet f g) = f; - l_adsorb_m_j: ∀f,g. meet f (join f g) = f +record algebra (K: field) (V:vector_space K) (a_one:V) : Type \def + { a_mult: V → V → V; + a_algebra_properties: is_algebra ? ? a_mult a_one }. -definition le \def λC.λmeet:C→C→C.λf,g. meet f g = f. +interpretation "Algebra product" 'times a b = + (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). -record is_riesz_space (K:ordered_field_ch0) (C:Type) (plus:C→C→C) (zero:C) - (opp:C→C) (mult:K→C→C) (join,meet:C→C→C) : Prop \def - { (* vector space properties *) - rs_vector_space: is_vector_space K C plus zero opp mult; - (* lattice properties *) - rs_lattice: is_lattice C join meet; - (* other properties *) - rs_compat_le_plus: ∀f,g,h. le ? meet f g →le ? meet (plus f h) (plus g h); - rs_compat_le_times: ∀a,f. 0≤a → le ? meet zero f → le ? meet zero (mult a f) - }. +definition ring_of_algebra ≝ + λK.λV:vector_space K.λone:V.λA:algebra ? V one. + mk_ring V (a_mult ? ? ? A) one + (a_ring ? ? ? ? (a_algebra_properties ? ? ? A)). + +coercion cic:/matita/integration_algebras/ring_of_algebra.con. -definition absolute_value \def λC:Type.λopp.λjoin:C→C→C.λf.join f (opp f). +record is_f_algebra (K) (S:archimedean_riesz_space K) (one: S) + (A:algebra ? S one) : Prop +\def +{ compat_mult_le: + ∀f,g:S. + le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? ? A f g); + compat_mult_meet: + ∀f,g,h:S. + meet ? S f g = 0 → meet ? S (a_mult ? ? ? A h f) g = 0 +}. -record is_archimedean_riesz_space (K:ordered_field_ch0) (C:Type) (plus:C→C→C) - (zero:C) (opp:C→C) (mult:Type_OF_ordered_field_ch0 K→C→C) (join,meet:C→C→C) : Prop \def - { ars_riesz_space: is_riesz_space ? ? plus zero opp mult join meet; - ars_archimedean: ∃u.∀n,a.∀p:n > O. - le C meet (absolute_value ? opp join a) - (mult (inv K (sum_field K n) (not_eq_sum_field_zero K n p)) u) → - a = zero - }. \ No newline at end of file +record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) (one:R) : +Type \def +{ fa_algebra:> algebra ? R one; + fa_f_algebra_properties: is_f_algebra ? ? ? fa_algebra +}. + +(* to be proved; see footnote 2 in the paper by Spitters *) +axiom symmetric_a_mult: + ∀K,R,one.∀A:f_algebra K R one. symmetric ? (a_mult ? ? ? A). + +record integration_f_algebra (R:real) : Type \def + { ifa_integration_riesz_space:> integration_riesz_space R; + ifa_f_algebra:> + f_algebra ? ifa_integration_riesz_space + (irs_unit ? ifa_integration_riesz_space) + }.