X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fintegration_algebras.ma;h=534882ff2a54b31dbeef313f1740168959f1af92;hb=08d8e4e422aafdc11e4230a87f2adee7facad809;hp=b2fb189e9dbd35196e6c7ac7370bab0246ccca47;hpb=8b62b96fea74985e303e093d9b7ead91089c664e;p=helm.git diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index b2fb189e9..534882ff2 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -27,12 +27,80 @@ record is_vector_space (K: field) (G:abelian_group) (emult:K→G→G) : Prop record vector_space (K:field): Type \def { vs_abelian_group :> abelian_group; emult: K → vs_abelian_group → vs_abelian_group; - vs_vector_space_properties :> is_vector_space K vs_abelian_group emult + vs_vector_space_properties :> is_vector_space ? vs_abelian_group emult }. interpretation "Vector space external product" 'times a b = (cic:/matita/integration_algebras/emult.con _ _ a b). +record is_semi_norm (R:real) (V: vector_space R) (semi_norm:V→R) : Prop \def + { sn_positive: ∀x:V. 0 ≤ semi_norm x; + sn_omogeneous: ∀a:R.∀x:V. semi_norm (a*x) = (abs ? a) * semi_norm x; + sn_triangle_inequality: ∀x,y:V. semi_norm (x + y) ≤ semi_norm x + semi_norm y + }. + +theorem eq_semi_norm_zero_zero: + ∀R:real.∀V:vector_space R.∀semi_norm:V→R. + is_semi_norm ? ? semi_norm → + semi_norm 0 = 0. + intros; + (* facile *) + elim daemon. +qed. + +record is_norm (R:real) (V:vector_space R) (norm:V → R) : Prop \def + { n_semi_norm:> is_semi_norm ? ? norm; + n_properness: ∀x:V. norm x = 0 → x = 0 + }. + +record is_semi_distance (R:real) (C:Type) (semi_d: C→C→R) : Prop \def + { sd_positive: ∀x,y:C. 0 ≤ semi_d x y; + sd_properness: \forall x:C. semi_d x x = 0; + sd_triangle_inequality: ∀x,y,z:C. semi_d x z ≤ semi_d x y + semi_d z y + }. + +record is_distance (R:real) (C:Type) (d:C→C→R) : Prop \def + { d_semi_distance:> is_semi_distance ? ? d; + d_properness: ∀x,y:C. d x y = 0 → x=y + }. + +definition induced_distance ≝ + λR:real.λV:vector_space R.λnorm:V→R. + λf,g:V.norm (f - g). + +theorem induced_distance_is_distance: + ∀R:real.∀V:vector_space R.∀norm:V→R. + is_norm ? ? norm → is_distance ? ? (induced_distance ? ? norm). + intros; + apply mk_is_distance; + [ apply mk_is_semi_distance; + [ unfold induced_distance; + intros; + apply sn_positive; + apply n_semi_norm; + assumption + | unfold induced_distance; + intros; + unfold minus; + rewrite < plus_comm; + rewrite > opp_inverse; + apply eq_semi_norm_zero_zero; + apply n_semi_norm; + assumption + | unfold induced_distance; + intros; + (* ??? *) + elim daemon + ] + | unfold induced_distance; + intros; + generalize in match (n_properness ? ? ? H ? H1); + intro; + (* facile *) + elim daemon + ]. +qed. + record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def { (* abelian semigroup properties *) l_comm_j: symmetric ? join; @@ -55,6 +123,11 @@ definition le \def λC:Type.λL:lattice C.λf,g. meet ? L f g = f. interpretation "Lattice le" 'leq a b = (cic:/matita/integration_algebras/le.con _ _ a b). +definition lt \def λC:Type.λL:lattice C.λf,g. le ? L f g ∧ f ≠ g. + +interpretation "Lattice lt" 'lt a b = + (cic:/matita/integration_algebras/lt.con _ _ a b). + definition carrier_of_lattice ≝ λC:Type.λL:lattice C.C. @@ -79,9 +152,7 @@ record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop { ars_archimedean: ∃u.∀n.∀a.∀p:n > O. le ? S (absolute_value ? S a) - (emult ? S - (inv ? (sum_field K n) (not_eq_sum_field_zero ? n p)) - u) → + ((inv ? (sum_field K n) (not_eq_sum_field_zero ? n p))* u) → a = 0 }. @@ -90,6 +161,101 @@ record archimedean_riesz_space (K:ordered_field_ch0) : Type \def ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space }. +record is_integral (K) (R:archimedean_riesz_space K) (I:R→K) : Prop +\def + { i_positive: ∀f:R. le ? R 0 f → of_le K 0 (I f); + i_linear1: ∀f,g:R. I (f + g) = I f + I g; + i_linear2: ∀f:R.∀k:K. I (k*f) = k*(I f) + }. + +definition is_weak_unit ≝ +(* This definition is by Spitters. He cites Fremlin 353P, but: + 1. that theorem holds only in f-algebras (as in Spitters, but we are + defining it on Riesz spaces) + 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? + λR:real.λV:archimedean_riesz_space R.λunit: V. + ∀x:V. meet x unit = 0 → u = 0. + 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces + only. We pick this definition for now. +*) λR:real.λV:archimedean_riesz_space R.λe:V. + ∀v:V. lt ? V 0 v → lt ? V 0 (meet ? V v e). + +(* Here we are avoiding a construction (the quotient space to define + f=g iff I(|f-g|)=0 *) +record integration_riesz_space (R:real) : Type \def + { irs_archimedean_riesz_space:> archimedean_riesz_space R; + irs_unit: irs_archimedean_riesz_space; + irs_weak_unit: is_weak_unit ? ? irs_unit; + integral: irs_archimedean_riesz_space → R; + irs_integral_properties: is_integral ? ? integral; + irs_limit1: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn.integral (meet ? irs_archimedean_riesz_space f + ((sum_field R n)*irs_unit))) + (integral f); + irs_limit2: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn. + integral (meet ? irs_archimedean_riesz_space f + ((inv ? (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))) + ) * irs_unit))) 0; + irs_quotient_space1: + ∀f,g:irs_archimedean_riesz_space. + integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 → f=g + }. + +definition induced_norm ≝ + λR:real.λV:integration_riesz_space R.λf:V. + integral ? ? (absolute_value ? ? f). + +lemma induced_norm_is_norm: + ∀R:real.∀V:integration_riesz_space R.is_norm ? V (induced_norm ? V). + intros; + apply mk_is_norm; + [ apply mk_is_semi_norm; + [ unfold induced_norm; + intros; + apply i_positive; + [ apply (irs_integral_properties ? V) + | (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm; + (* facile *) + elim daemon + | intros; + unfold induced_norm; + (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm in H; + apply irs_quotient_space1; + unfold minus; + rewrite < plus_comm; + rewrite < eq_zero_opp_zero; + rewrite > zero_neutral; + assumption + ]. +qed. + +definition distance_induced_by_integral ≝ + λR:real.λV:integration_riesz_space R. + induced_distance ? ? (induced_norm R V). + +theorem distance_induced_by_integral_is_distance: + ∀R:real.∀V:integration_riesz_space R. + is_distance ? ? (distance_induced_by_integral ? V). + intros; + unfold distance_induced_by_integral; + apply induced_distance_is_distance; + apply induced_norm_is_norm. +qed. + record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ { (* ring properties *) @@ -99,80 +265,45 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) }. -record algebra (K: field) (V:vector_space K) : Type \def +record algebra (K: field) (V:vector_space K) (a_one:V) : Type \def { a_mult: V → V → V; - a_one: V; - a_algebra_properties: is_algebra K V a_mult a_one + a_algebra_properties: is_algebra ? ? a_mult a_one }. interpretation "Algebra product" 'times a b = (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). -interpretation "Algebra one" 'one = - (cic:/matita/integration_algebras/a_one.con _ _ _). - definition ring_of_algebra ≝ - λK.λV:vector_space K.λA:algebra ? V. - mk_ring V (a_mult ? ? A) (a_one ? ? A) - (a_ring ? ? ? ? (a_algebra_properties ? ? A)). + λK.λV:vector_space K.λone:V.λA:algebra ? V one. + mk_ring V (a_mult ? ? ? A) one + (a_ring ? ? ? ? (a_algebra_properties ? ? ? A)). coercion cic:/matita/integration_algebras/ring_of_algebra.con. -record is_f_algebra (K) (S:archimedean_riesz_space K) (A:algebra ? S) : Prop +record is_f_algebra (K) (S:archimedean_riesz_space K) (one: S) + (A:algebra ? S one) : Prop \def { compat_mult_le: ∀f,g:S. - le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? A f g); + le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? ? A f g); compat_mult_meet: ∀f,g,h:S. - meet ? S f g = 0 → meet ? S (a_mult ? ? A h f) g = 0 + meet ? S f g = 0 → meet ? S (a_mult ? ? ? A h f) g = 0 }. -record f_algebra (K:ordered_field_ch0) : Type \def -{ fa_archimedean_riesz_space:> archimedean_riesz_space K; - fa_algebra:> algebra ? fa_archimedean_riesz_space; - fa_f_algebra_properties: is_f_algebra ? fa_archimedean_riesz_space fa_algebra +record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) (one:R) : +Type \def +{ fa_algebra:> algebra ? R one; + fa_f_algebra_properties: is_f_algebra ? ? ? fa_algebra }. (* to be proved; see footnote 2 in the paper by Spitters *) -axiom symmetric_a_mult: ∀K.∀A:f_algebra K. symmetric ? (a_mult ? ? A). - - -definition tends_to : ∀F:ordered_field_ch0.∀f:nat→F.∀l:F.Prop. - alias symbol "leq" = "Ordered field le". - alias id "le" = "cic:/matita/nat/orders/le.ind#xpointer(1/1)". - apply - (λF:ordered_field_ch0.λf:nat → F.λl:F. - ∀n:nat.∃m:nat.∀j:nat. le m j → - l - (inv F (sum_field F (S n)) ?) ≤ f j ∧ - f j ≤ l + (inv F (sum_field F (S n)) ?)); - apply not_eq_sum_field_zero; - unfold; - auto new. -qed. +axiom symmetric_a_mult: + ∀K,R,one.∀A:f_algebra K R one. symmetric ? (a_mult ? ? ? A). -record is_integral (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop -\def - { i_positive: ∀f:Type_OF_f_algebra ? A. le ? (lattice_OF_f_algebra ? A) 0 f → of_le K 0 (I f); - i_linear1: ∀f,g:Type_OF_f_algebra ? A. I (f + g) = I f + I g; - i_linear2: ∀f:A.∀k:K. I (emult ? A k f) = k*(I f) - }. - -(* Here we are avoiding a construction (the quotient space to define - f=g iff I(|f-g|)=0 *) -record is_integration_f_algebra (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop -\def - { ifa_integral: is_integral ? ? I; - ifa_limit1: - ∀f:A. tends_to ? (λn.I(meet ? A f ((sum_field K n)*(a_one ? ? A)))) (I f); - ifa_limit2: - ∀f:A. - tends_to ? - (λn. - I (meet ? A f - ((inv ? (sum_field K (S n)) - (not_eq_sum_field_zero K (S n) (le_S_S O n (le_O_n n))) - ) * (a_one ? ? A)))) 0; - ifa_quotient_space1: - ∀f,g:A. f=g → I(absolute_value ? A (f - g)) = 0 - }. +record integration_f_algebra (R:real) : Type \def + { ifa_integration_riesz_space:> integration_riesz_space R; + ifa_f_algebra:> + f_algebra ? ifa_integration_riesz_space + (irs_unit ? ifa_integration_riesz_space) + }. \ No newline at end of file