X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fintegration_algebras.ma;h=7b65cd7fb5b788b7c4cd26ef1f6ee37e4ef49240;hb=9da97ce63a09894041fc2569fd728f994832f7e4;hp=c44d3e4822fa91fe15ed8fc9c708c9527946a2b2;hpb=9da5a5054b66ee9264ecccb2af43c2fce3b35e64;p=helm.git diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index c44d3e482..7b65cd7fb 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -14,303 +14,308 @@ set "baseuri" "cic:/matita/integration_algebras/". -include "higher_order_defs/functions.ma". -include "nat/nat.ma". -include "nat/orders.ma". +include "vector_spaces.ma". +include "lattices.ma". -definition left_neutral \def λC,op.λe:C. ∀x:C. op e x = x. +(**************** Riesz Spaces ********************) -definition right_neutral \def λC,op. λe:C. ∀x:C. op x e=x. - -definition left_inverse \def λC,op.λe:C.λinv:C→C. ∀x:C. op (inv x) x = e. +record pre_riesz_space (K:ordered_field_ch0) : Type \def + { rs_vector_space:> vector_space K; + rs_lattice_: lattice; + rs_with: os_carrier rs_lattice_ = rs_vector_space + }. -definition right_inverse \def λC,op.λe:C.λ inv: C→ C. ∀x:C. op x (inv x)=e. +lemma rs_lattice: ∀K:ordered_field_ch0.pre_riesz_space K → lattice. + intros (K V); + apply mk_lattice; + [ apply (carrier V) + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? (rs_with ? V)); + apply l_join + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? (rs_with ? V)); + apply l_meet + | apply + (eq_rect' ? ? + (λa:Type.λH:os_carrier (rs_lattice_ ? V)=a. + is_lattice a + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_join (rs_lattice_ K V)) a H) + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_meet (rs_lattice_ K V)) a H)) + ? ? (rs_with ? V)); + simplify; + apply l_lattice_properties + ]. +qed. -definition distributive_left ≝ - λA:Type.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f x (g y z) = g (f x y) (f x z). +coercion cic:/matita/integration_algebras/rs_lattice.con. -definition distributive_right ≝ - λA:Type.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f (g x y) z = g (f x z) (f y z). +record is_riesz_space (K:ordered_field_ch0) (V:pre_riesz_space K) : Prop ≝ + { rs_compat_le_plus: ∀f,g,h:V. f≤g → f+h≤g+h; + rs_compat_le_times: ∀a:K.∀f:V. zero K≤a → zero V≤f → zero V≤a*f + }. -record is_abelian_group (C:Type) (plus:C→C→C) (zero:C) (opp:C→C) : Prop \def - { (* abelian additive semigroup properties *) - plus_assoc: associative ? plus; - plus_comm: symmetric ? plus; - (* additive monoid properties *) - zero_neutral: left_neutral ? plus zero; - (* additive group properties *) - opp_inverse: left_inverse ? plus zero opp +record riesz_space (K:ordered_field_ch0) : Type \def + { rs_pre_riesz_space:> pre_riesz_space K; + rs_riesz_space_properties: is_riesz_space ? rs_pre_riesz_space }. -record is_ring (C:Type) (plus:C→C→C) (mult:C→C→C) (zero:C) (opp:C→C) : Prop -≝ - { (* abelian group properties *) - abelian_group:> is_abelian_group ? plus zero opp; - (* multiplicative semigroup properties *) - mult_assoc: associative ? mult; - (* ring properties *) - mult_plus_distr_left: distributive_left C mult plus; - mult_plus_distr_right: distributive_right C mult plus +record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { positive: ∀u:V. (0:carrier V)≤u → (0:carrier K)≤T u; + linear1: ∀u,v:V. T (u+v) = T u + T v; + linear2: ∀u:V.∀k:K. T (k*u) = k*(T u) }. - -record ring : Type \def - { r_carrier:> Type; - r_plus: r_carrier → r_carrier → r_carrier; - r_mult: r_carrier → r_carrier → r_carrier; - r_zero: r_carrier; - r_opp: r_carrier → r_carrier; - r_ring_properties:> is_ring ? r_plus r_mult r_zero r_opp + +record sequentially_order_continuous (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { soc_incr: + ∀a:nat→V.∀l:V.is_increasing ? a → is_sup V a l → + is_increasing K (λn.T (a n)) ∧ tends_to ? (λn.T (a n)) (T l) }. -notation "0" with precedence 89 -for @{ 'zero }. +definition absolute_value \def λK.λS:riesz_space K.λf.l_join S f (-f). -interpretation "Ring zero" 'zero = - (cic:/matita/integration_algebras/r_zero.con _). +(**************** Normed Riesz spaces ****************************) -interpretation "Ring plus" 'plus a b = - (cic:/matita/integration_algebras/r_plus.con _ a b). +definition is_riesz_norm ≝ + λR:real.λV:riesz_space R.λnorm:norm R V. + ∀f,g:V. absolute_value ? V f ≤ absolute_value ? V g → + n_function R V norm f ≤ n_function R V norm g. -interpretation "Ring mult" 'times a b = - (cic:/matita/integration_algebras/r_mult.con _ a b). +record riesz_norm (R:real) (V:riesz_space R) : Type ≝ + { rn_norm:> norm R V; + rn_riesz_norm_property: is_riesz_norm ? ? rn_norm + }. -interpretation "Ring opp" 'uminus a = - (cic:/matita/integration_algebras/r_opp.con _ a). +(*CSC: non fa la chiusura delle coercion verso funclass *) +definition rn_function ≝ + λR:real.λV:riesz_space R.λnorm:riesz_norm ? V. + n_function R V (rn_norm ? ? norm). -lemma eq_mult_zero_x_zero: ∀R:ring.∀x:R.0*x=0. - intros; - generalize in match (zero_neutral ? ? ? ? R 0); intro; - generalize in match (eq_f ? ? (λy.y*x) ? ? H); intro; clear H; - rewrite > (mult_plus_distr_right ? ? ? ? ? R) in H1; - generalize in match (eq_f ? ? (λy.-(0*x)+y) ? ? H1); intro; clear H1; - rewrite < (plus_assoc ? ? ? ? R) in H; - rewrite > (opp_inverse ? ? ? ? R) in H; - rewrite > (zero_neutral ? ? ? ? R) in H; - assumption. -qed. +coercion cic:/matita/integration_algebras/rn_function.con 1. -lemma eq_mult_x_zero_zero: ∀R:ring.∀x:R.x*0=0. -intros; -generalize in match (zero_neutral ? ? ? ? R 0); -intro; -generalize in match (eq_f ? ? (\lambda y.x*y) ? ? H); intro; clear H; -rewrite > (mult_plus_distr_left ? ? ? ? ? R) in H1; -generalize in match (eq_f ? ? (\lambda y. (-(x*0)) +y) ? ? H1);intro; -clear H1; -rewrite < (plus_assoc ? ? ? ? R) in H; -rewrite > (opp_inverse ? ? ? ? R) in H; -rewrite > (zero_neutral ? ? ? ? R) in H; -assumption. - - -record is_field (C:Type) (plus:C→C→C) (mult:C→C→C) (zero,one:C) (opp:C→C) - (inv:∀x:C.x ≠ zero →C) : Prop -≝ - { (* ring properties *) - ring_properties:> is_ring ? plus mult zero opp; - (* multiplicative abelian properties *) - mult_comm: symmetric ? mult; - (* multiplicative monoid properties *) - one_neutral: left_neutral ? mult one; - (* multiplicative group properties *) - inv_inverse: ∀x.∀p: x ≠ zero. mult (inv x p) x = one; - (* integral domain *) - not_eq_zero_one: zero ≠ one +(************************** L-SPACES *************************************) +(* +record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝ + { ls_banach: is_complete ? V (induced_distance ? ? norm); + ls_linear: ∀f,g:V. le ? V 0 f → le ? V 0 g → norm (f+g) = norm f + norm g }. +*) +(******************** ARCHIMEDEAN RIESZ SPACES ***************************) + +record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop +\def + { ars_archimedean: ∃u:S.∀n.∀a.∀p:n > O. + absolute_value ? S a ≤ + (inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u → + a = 0 + }. -lemma cancellationlaw: \forall R:ring. \forall x,y,z:R. -(x+y=x+z) \to (y=z). -intros; -generalize in match (eq_f ? ? (\lambda a. (-x +a)) ? ? H); -intros; clear H; -rewrite < (plus_assoc ? ? ? ? R) in H1; -rewrite < (plus_assoc ? ? ? ? R) in H1; -rewrite > (opp_inverse ? ? ? ? R) in H1; -rewrite > (zero_neutral ? ? ? ? R) in H1; -rewrite > (zero_neutral ? ? ? ? R) in H1; -assumption. -qed. +record archimedean_riesz_space (K:ordered_field_ch0) : Type \def + { ars_riesz_space:> riesz_space K; + ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space + }. + +definition is_weak_unit ≝ +(* This definition is by Spitters. He cites Fremlin 353P, but: + 1. that theorem holds only in f-algebras (as in Spitters, but we are + defining it on Riesz spaces) + 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? + λR:real.λV:archimedean_riesz_space R.λunit: V. + ∀x:V. meet x unit = 0 → u = 0. + 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces + only. We pick this definition for now. +*) λR:real.λV:archimedean_riesz_space R.λe:V. + ∀v:V. lt V 0 v → lt V 0 (l_meet V v e). + +(* Here we are avoiding a construction (the quotient space to define + f=g iff I(|f-g|)=0 *) +record integration_riesz_space (R:real) : Type \def + { irs_archimedean_riesz_space:> archimedean_riesz_space R; + irs_unit: irs_archimedean_riesz_space; + irs_weak_unit: is_weak_unit ? ? irs_unit; + integral: irs_archimedean_riesz_space → R; + irs_positive_linear: is_positive_linear ? ? integral; + irs_limit1: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn.integral (l_meet irs_archimedean_riesz_space f + ((sum_field R n)*irs_unit))) + (integral f); + irs_limit2: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn. + integral (l_meet irs_archimedean_riesz_space f + ((inv ? (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))) + ) * irs_unit))) 0; + irs_quotient_space1: + ∀f,g:irs_archimedean_riesz_space. + integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 → f=g + }. +definition induced_norm_fun ≝ + λR:real.λV:integration_riesz_space R.λf:V. + integral ? V (absolute_value ? ? f). -lemma opp_opp: \forall R:ring. \forall x:R. (-(-x))=x. -intros; -apply (cancellationlaw ? (-x) ? ?); -rewrite > (opp_inverse ? ? ? ? R (x)); -rewrite > (plus_comm ? ? ? ? R); -rewrite > (opp_inverse ? ? ? ? R); -reflexivity. +lemma induced_norm_is_norm: + ∀R:real.∀V:integration_riesz_space R.is_norm R V (induced_norm_fun ? V). + elim daemon.(* + intros; + apply mk_is_norm; + [ apply mk_is_semi_norm; + [ unfold induced_norm_fun; + intros; + apply positive; + [ apply (irs_positive_linear ? V) + | (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun; + (* facile *) + elim daemon + | intros; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun in H; + apply irs_quotient_space1; + unfold minus; + rewrite < plus_comm; + rewrite < eq_zero_opp_zero; + rewrite > zero_neutral; + assumption + ].*) qed. +definition induced_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_norm ? ? (induced_norm_fun ? V) (induced_norm_is_norm ? V). +lemma is_riesz_norm_induced_norm: + ∀R:real.∀V:integration_riesz_space R. + is_riesz_norm ? ? (induced_norm ? V). + intros; + unfold is_riesz_norm; + intros; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon. +qed. +definition induced_riesz_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_riesz_norm ? ? (induced_norm ? V) (is_riesz_norm_induced_norm ? V). -let rec sum (C:Type) (plus:C→C→C) (zero,one:C) (n:nat) on n ≝ - match n with - [ O ⇒ zero - | (S m) ⇒ plus one (sum C plus zero one m) - ]. +definition distance_induced_by_integral ≝ + λR:real.λV:integration_riesz_space R. + induced_distance ? ? (induced_norm R V). -record field : Type \def - { f_ring:> ring; - one: f_ring; - inv: ∀x:f_ring. x ≠ 0 → f_ring; - field_properties:> - is_field ? (r_plus f_ring) (r_mult f_ring) (r_zero f_ring) one - (r_opp f_ring) inv - }. +definition is_complete_integration_riesz_space ≝ + λR:real.λV:integration_riesz_space R. + is_complete ? ? (distance_induced_by_integral ? V). -definition sum_field ≝ - λF:field. sum ? (r_plus F) (r_zero F) (one F). - -notation "1" with precedence 89 -for @{ 'one }. - -interpretation "Field one" 'one = - (cic:/matita/integration_algebras/one.con _). - -record is_ordered_field_ch0 (C:Type) (plus,mult:C→C→C) (zero,one:C) (opp:C→C) - (inv:∀x:C.x ≠ zero → C) (le:C→C→Prop) : Prop \def - { (* field properties *) - of_is_field:> is_field C plus mult zero one opp inv; - of_mult_compat: ∀a,b. le zero a → le zero b → le zero (mult a b); - of_plus_compat: ∀a,b,c. le a b → le (plus a c) (plus b c); - of_weak_tricotomy : ∀a,b. a≠b → le a b ∨ le b a; - (* 0 characteristics *) - of_char0: ∀n. n > O → sum ? plus zero one n ≠ zero - }. - -record ordered_field_ch0 : Type \def - { of_field:> field; - of_le: of_field → of_field → Prop; - of_ordered_field_properties:> - is_ordered_field_ch0 ? (r_plus of_field) (r_mult of_field) (r_zero of_field) - (one of_field) (r_opp of_field) (inv of_field) of_le +record complete_integration_riesz_space (R:real) : Type ≝ + { cirz_integration_riesz_space:> integration_riesz_space R; + cirz_complete_integration_riesz_space_property: + is_complete_integration_riesz_space ? cirz_integration_riesz_space }. -interpretation "Ordered field le" 'leq a b = - (cic:/matita/integration_algebras/of_le.con _ a b). - -definition lt \def λF:ordered_field_ch0.λa,b:F.a ≤ b ∧ a ≠ b. - -interpretation "Ordered field lt" 'lt a b = - (cic:/matita/integration_algebras/lt.con _ a b). - -(*incompleto -lemma le_zero_x_to_le_opp_x_zero: ∀F:ordered_field_ch0.∀x:F. 0 ≤ x → -x ≤ 0. -intros; - generalize in match (of_plus_compat ? ? ? ? ? ? ? ? F ? ? (-x) H); intro; - rewrite > (zero_neutral ? ? ? ? F) in H1; - rewrite > (plus_comm ? ? ? ? F) in H1; - rewrite > (opp_inverse ? ? ? ? F) in H1; - - assumption. -qed.*) - -axiom le_x_zero_to_le_zero_opp_x: ∀F:ordered_field_ch0.∀x:F. x ≤ 0 → 0 ≤ -x. -(* intros; - generalize in match (of_plus_compat ? ? ? ? ? ? ? ? F ? ? (-x) H); intro; - rewrite > (zero_neutral ? ? ? ? F) in H1; - rewrite > (plus_comm ? ? ? ? F) in H1; - rewrite > (opp_inverse ? ? ? ? F) in H1; - assumption. -qed.*) +(* now we prove that any complete integration riesz space is an L-space *) -(* -lemma eq_opp_x_times_opp_one_x: ∀F:ordered_field_ch0.∀x:F.-x = -1*x. +(*theorem is_l_space_l_space_induced_by_integral: + ∀R:real.∀V:complete_integration_riesz_space R. + is_l_space ? ? (induced_riesz_norm ? V). intros; - -lemma not_eq_x_zero_to_lt_zero_mult_x_x: - ∀F:ordered_field_ch0.∀x:F. x ≠ 0 → 0 < x * x. - intros; - elim (of_weak_tricotomy ? ? ? ? ? ? ? ? F ? ? H); - [ generalize in match (le_x_zero_to_le_zero_opp_x F ? H1); intro; - generalize in match (of_mult_compat ? ? ? ? ? ? ? ? F ? ? H2 H2); intro; -*) + constructor 1; + [ apply cirz_complete_integration_riesz_space_property + | intros; + unfold induced_riesz_norm; + simplify; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ]. +qed.*) -axiom not_eq_sum_field_zero: ∀F,n. n > O → sum_field F n ≠ 0. +(**************************** f-ALGEBRAS ********************************) -record is_vector_space (K: field) (C:Type) (plus:C→C→C) (zero:C) (opp:C→C) - (emult:K→C→C) : Prop +record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ - { (* abelian group properties *) - vs_abelian_group: is_abelian_group ? plus zero opp; - (* other properties *) - vs_nilpotent: ∀v. emult 0 v = zero; - vs_neutral: ∀v. emult 1 v = v; - vs_distributive: ∀a,b,v. emult (a + b) v = plus (emult a v) (emult b v); - vs_associative: ∀a,b,v. emult (a * b) v = emult a (emult b v) + { (* ring properties *) + a_ring: is_ring V mult one; + (* algebra properties *) + a_associative_left: ∀a,f,g. a * (mult f g) = mult (a * f) g; + a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) + }. + +record algebra (K: field) : Type \def + { a_vector_space:> vector_space K; + a_one: a_vector_space; + a_mult: a_vector_space → a_vector_space → a_vector_space; + a_algebra_properties: is_algebra ? ? a_mult a_one }. -record vector_space : Type \def -{vs_ : +interpretation "Algebra product" 'times a b = + (cic:/matita/integration_algebras/a_mult.con _ a b). +definition ring_of_algebra ≝ + λK.λA:algebra K. + mk_ring A (a_mult ? A) (a_one ? A) + (a_ring ? ? ? ? (a_algebra_properties ? A)). -} -record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def - { (* abelian semigroup properties *) - l_comm_j: symmetric ? join; - l_associative_j: associative ? join; - l_comm_m: symmetric ? meet; - l_associative_m: associative ? meet; - (* other properties *) - l_adsorb_j_m: ∀f,g. join f (meet f g) = f; - l_adsorb_m_j: ∀f,g. meet f (join f g) = f - }. +coercion cic:/matita/integration_algebras/ring_of_algebra.con. -(* This should be a let-in field of the riesz_space!!! *) -definition le_ \def λC.λmeet:C→C→C.λf,g. meet f g = f. - -record is_riesz_space (K:ordered_field_ch0) (C:Type) (plus:C→C→C) (zero:C) - (opp:C→C) (emult:K→C→C) (join,meet:C→C→C) : Prop \def - { (* vector space properties *) - rs_vector_space: is_vector_space K C plus zero opp emult; - (* lattice properties *) - rs_lattice: is_lattice C join meet; - (* other properties *) - rs_compat_le_plus: ∀f,g,h. le_ ? meet f g → le_ ? meet (plus f h) (plus g h); - rs_compat_le_times: ∀a,f. 0≤a → le_ ? meet zero f → le_ ? meet zero (emult a f) +record pre_f_algebra (K:ordered_field_ch0) : Type ≝ + { fa_archimedean_riesz_space:> archimedean_riesz_space K; + fa_algebra_:> algebra K; + fa_with: a_vector_space ? fa_algebra_ = rs_vector_space ? fa_archimedean_riesz_space }. - -definition absolute_value \def λC:Type.λopp.λjoin:C→C→C.λf.join f (opp f). - -record is_archimedean_riesz_space (K:ordered_field_ch0) (C:Type) (plus:C→C→C) - (zero:C) (opp:C→C) (emult:K→C→C) (join,meet:C→C→C) - :Prop \def - { ars_riesz_space: is_riesz_space ? ? plus zero opp emult join meet; - ars_archimedean: ∃u.∀n,a.∀p:n > O. - le_ C meet (absolute_value ? opp join a) - (emult (inv K (sum_field K n) (not_eq_sum_field_zero K n p)) u) → - a = zero - }. -record is_algebra (K: field) (C:Type) (plus:C→C→C) (zero:C) (opp:C→C) - (emult:K→C→C) (mult:C→C→C) : Prop -≝ - { (* vector space properties *) - a_vector_space_properties: is_vector_space ? ? plus zero opp emult; - (* ring properties *) - a_ring: is_ring ? plus mult zero opp; - (* algebra properties *) - a_associative_left: ∀a,f,g. emult a (mult f g) = mult (emult a f) g; - a_associative_right: ∀a,f,g. emult a (mult f g) = mult f (emult a g) - }. - - -record is_f_algebra (K: ordered_field_ch0) (C:Type) (plus: C\to C \to C) -(zero:C) (opp: C \to C) (emult: Type_OF_ordered_field_ch0 K\to C\to C) (mult: C\to C\to C) -(join,meet: C\to C\to C) : Prop -\def -{ archimedean_riesz_properties:> is_archimedean_riesz_space K C - plus zero opp emult join meet ; -algebra_properties:> is_algebra ? ? plus zero opp emult mult; -compat_mult_le: \forall f,g: C. le_ ? meet zero f \to le_ ? meet zero g \to - le_ ? meet zero (mult f g); -compat_mult_meet: \forall f,g,h. meet f g = zero \to meet (mult h f) g = zero +lemma fa_algebra: ∀K:ordered_field_ch0.pre_f_algebra K → algebra K. + intros (K A); + apply mk_algebra; + [ apply (rs_vector_space ? A) + | elim daemon + | elim daemon + | elim daemon + ] + qed. + +coercion cic:/matita/integration_algebras/fa_algebra.con. + +record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝ +{ compat_mult_le: + ∀f,g:A. + zero A ≤ f → zero A ≤ g → zero A ≤ a_mult ? A f g; + compat_mult_meet: + ∀f,g,h:A. + l_meet A f g = (zero A) → l_meet A (a_mult ? A h f) g = (zero A) }. -record f_algebra : Type \def -{ +record f_algebra (K:ordered_field_ch0) : Type ≝ +{ fa_pre_f_algebra:> pre_f_algebra K; + fa_f_algebra_properties: is_f_algebra ? fa_pre_f_algebra +}. + +(* to be proved; see footnote 2 in the paper by Spitters *) +axiom symmetric_a_mult: + ∀K.∀A:f_algebra K. symmetric ? (a_mult ? A). + +record integration_f_algebra (R:real) : Type \def + { ifa_integration_riesz_space:> integration_riesz_space R; + ifa_f_algebra_: f_algebra R; + ifa_with: + fa_archimedean_riesz_space ? ifa_f_algebra_ = + irs_archimedean_riesz_space ? ifa_integration_riesz_space + }. + +axiom ifa_f_algebra: ∀R:real.integration_f_algebra R → f_algebra R. -} +coercion cic:/matita/integration_algebras/ifa_f_algebra.con. \ No newline at end of file