X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fintegration_algebras.ma;h=cbe629dac0ca6654fa5cca095a13317f4851ef3f;hb=01b688447c18c1992b0c19ac5583ca9fee692514;hp=b2fb189e9dbd35196e6c7ac7370bab0246ccca47;hpb=8b62b96fea74985e303e093d9b7ead91089c664e;p=helm.git diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index b2fb189e9..cbe629dac 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -14,74 +14,149 @@ set "baseuri" "cic:/matita/integration_algebras/". -include "reals.ma". +include "vector_spaces.ma". +include "lattices.ma". -record is_vector_space (K: field) (G:abelian_group) (emult:K→G→G) : Prop -≝ - { vs_nilpotent: ∀v. emult 0 v = 0; - vs_neutral: ∀v. emult 1 v = v; - vs_distributive: ∀a,b,v. emult (a + b) v = (emult a v) + (emult b v); - vs_associative: ∀a,b,v. emult (a * b) v = emult a (emult b v) +(**************** Riesz Spaces ********************) + +record pre_riesz_space (K:ordered_field_ch0) : Type \def + { rs_vector_space:> vector_space K; + rs_lattice_: lattice; + rs_ordered_abelian_group_: ordered_abelian_group; + rs_with1: + og_abelian_group rs_ordered_abelian_group_ = vs_abelian_group ? rs_vector_space; + rs_with2: + og_ordered_set rs_ordered_abelian_group_ = ordered_set_of_lattice rs_lattice_ }. -record vector_space (K:field): Type \def -{ vs_abelian_group :> abelian_group; - emult: K → vs_abelian_group → vs_abelian_group; - vs_vector_space_properties :> is_vector_space K vs_abelian_group emult -}. +lemma rs_lattice: ∀K.pre_riesz_space K → lattice. + intros (K V); + cut (os_carrier (rs_lattice_ ? V) = V); + [ apply mk_lattice; + [ apply (carrier V) + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_join + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_meet + | apply + (eq_rect' ? ? + (λa:Type.λH:os_carrier (rs_lattice_ ? V)=a. + is_lattice a + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_join (rs_lattice_ K V)) a H) + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_meet (rs_lattice_ K V)) a H)) + ? ? Hcut); + simplify; + apply l_lattice_properties + ] + | transitivity (os_carrier (rs_ordered_abelian_group_ ? V)); + [ apply (eq_f ? ? os_carrier); + symmetry; + apply rs_with2 + | apply (eq_f ? ? carrier); + apply rs_with1 + ] + ]. +qed. + +coercion cic:/matita/integration_algebras/rs_lattice.con. + +lemma rs_ordered_abelian_group: ∀K.pre_riesz_space K → ordered_abelian_group. + intros (K V); + apply mk_ordered_abelian_group; + [ apply mk_pre_ordered_abelian_group; + [ apply (vs_abelian_group ? (rs_vector_space ? V)) + | apply (ordered_set_of_lattice (rs_lattice ? V)) + | reflexivity + ] + | simplify; + generalize in match + (og_ordered_abelian_group_properties (rs_ordered_abelian_group_ ? V)); + intro P; + unfold in P; + elim daemon(* + apply + (eq_rect ? ? + (λO:ordered_set. + ∀f,g,h. + os_le O f g → + os_le O + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with2 ? V)); + apply + (eq_rect ? ? + (λG:abelian_group. + ∀f,g,h. + os_le (ordered_set_OF_pre_riesz_space K V) f g → + os_le (ordered_set_OF_pre_riesz_space K V) + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with1 ? V)); + simplify; + apply og_ordered_abelian_group_properties*) + ] +qed. -interpretation "Vector space external product" 'times a b = - (cic:/matita/integration_algebras/emult.con _ _ a b). - -record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def - { (* abelian semigroup properties *) - l_comm_j: symmetric ? join; - l_associative_j: associative ? join; - l_comm_m: symmetric ? meet; - l_associative_m: associative ? meet; - (* other properties *) - l_adsorb_j_m: ∀f,g. join f (meet f g) = f; - l_adsorb_m_j: ∀f,g. meet f (join f g) = f +coercion cic:/matita/integration_algebras/rs_ordered_abelian_group.con. + +record is_riesz_space (K:ordered_field_ch0) (V:pre_riesz_space K) : Prop ≝ + { rs_compat_le_times: ∀a:K.∀f:V. 0≤a → 0≤f → 0≤a*f }. -record lattice (C:Type) : Type \def - { join: C → C → C; - meet: C → C → C; - l_lattice_properties: is_lattice ? join meet +record riesz_space (K:ordered_field_ch0) : Type \def + { rs_pre_riesz_space:> pre_riesz_space K; + rs_riesz_space_properties: is_riesz_space ? rs_pre_riesz_space }. -definition le \def λC:Type.λL:lattice C.λf,g. meet ? L f g = f. +record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { positive: ∀u:V. 0≤u → 0≤T u; + linear1: ∀u,v:V. T (u+v) = T u + T v; + linear2: ∀u:V.∀k:K. T (k*u) = k*(T u) + }. -interpretation "Lattice le" 'leq a b = - (cic:/matita/integration_algebras/le.con _ _ a b). +record sequentially_order_continuous (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { soc_incr: + ∀a:nat→V.∀l:V.is_increasing ? a → is_sup V a l → + is_increasing K (λn.T (a n)) ∧ tends_to ? (λn.T (a n)) (T l) + }. -definition carrier_of_lattice ≝ - λC:Type.λL:lattice C.C. +definition absolute_value ≝ λK.λS:riesz_space K.λf:S.f ∨ -f. -record is_riesz_space (K:ordered_field_ch0) (V:vector_space K) - (L:lattice (Type_OF_vector_space ? V)) -: Prop -\def - { rs_compat_le_plus: ∀f,g,h. le ? L f g → le ? L (f+h) (g+h); - rs_compat_le_times: ∀a:K.∀f. of_le ? 0 a → le ? L 0 f → le ? L 0 (a*f) - }. +(**************** Normed Riesz spaces ****************************) -record riesz_space (K:ordered_field_ch0) : Type \def - { rs_vector_space:> vector_space K; - rs_lattice:> lattice rs_vector_space; - rs_riesz_space_properties: is_riesz_space ? rs_vector_space rs_lattice +definition is_riesz_norm ≝ + λR:real.λV:riesz_space R.λnorm:norm R V. + ∀f,g:V. absolute_value ? V f ≤ absolute_value ? V g → + n_function R V norm f ≤ n_function R V norm g. + +record riesz_norm (R:real) (V:riesz_space R) : Type ≝ + { rn_norm:> norm R V; + rn_riesz_norm_property: is_riesz_norm ? ? rn_norm }. -definition absolute_value \def λK.λS:riesz_space K.λf.join ? S f (-f). +(*CSC: non fa la chiusura delle coercion verso funclass *) +definition rn_function ≝ + λR:real.λV:riesz_space R.λnorm:riesz_norm ? V. + n_function R V (rn_norm ? ? norm). + +coercion cic:/matita/integration_algebras/rn_function.con 1. + +(************************** L-SPACES *************************************) +(* +record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝ + { ls_banach: is_complete ? V (induced_distance ? ? norm); + ls_linear: ∀f,g:V. le ? V 0 f → le ? V 0 g → norm (f+g) = norm f + norm g + }. +*) +(******************** ARCHIMEDEAN RIESZ SPACES ***************************) record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop \def - { ars_archimedean: ∃u.∀n.∀a.∀p:n > O. - le ? S - (absolute_value ? S a) - (emult ? S - (inv ? (sum_field K n) (not_eq_sum_field_zero ? n p)) - u) → + { ars_archimedean: ∃u:S.∀n.∀a.∀p:n > O. + absolute_value ? S a ≤ + (inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u → a = 0 }. @@ -90,6 +165,137 @@ record archimedean_riesz_space (K:ordered_field_ch0) : Type \def ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space }. +definition is_weak_unit ≝ +(* This definition is by Spitters. He cites Fremlin 353P, but: + 1. that theorem holds only in f-algebras (as in Spitters, but we are + defining it on Riesz spaces) + 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? + λR:real.λV:archimedean_riesz_space R.λunit: V. + ∀x:V. meet x unit = 0 → u = 0. + 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces + only. We pick this definition for now. +*) λR:real.λV:archimedean_riesz_space R.λe:V. + ∀v:V. 0 archimedean_riesz_space R; + irs_unit: irs_archimedean_riesz_space; + irs_weak_unit: is_weak_unit ? ? irs_unit; + integral: irs_archimedean_riesz_space → R; + irs_positive_linear: is_positive_linear ? ? integral; + irs_limit1: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn.integral (f ∧ ((sum_field R n)*irs_unit))) + (integral f); + irs_limit2: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn. + integral (f ∧ + ((inv ? (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))) + ) * irs_unit))) 0; + irs_quotient_space1: + ∀f,g:irs_archimedean_riesz_space. + integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 → f=g + }. + +definition induced_norm_fun ≝ + λR:real.λV:integration_riesz_space R.λf:V. + integral ? V (absolute_value ? ? f). + +lemma induced_norm_is_norm: + ∀R:real.∀V:integration_riesz_space R.is_norm R V (induced_norm_fun ? V). + elim daemon.(* + intros; + apply mk_is_norm; + [ apply mk_is_semi_norm; + [ unfold induced_norm_fun; + intros; + apply positive; + [ apply (irs_positive_linear ? V) + | (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun; + (* facile *) + elim daemon + | intros; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun in H; + apply irs_quotient_space1; + unfold minus; + rewrite < plus_comm; + rewrite < eq_zero_opp_zero; + rewrite > zero_neutral; + assumption + ].*) +qed. + +definition induced_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_norm ? ? (induced_norm_fun ? V) (induced_norm_is_norm ? V). + +lemma is_riesz_norm_induced_norm: + ∀R:real.∀V:integration_riesz_space R. + is_riesz_norm ? ? (induced_norm ? V). + intros; + unfold is_riesz_norm; + intros; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon. +qed. + +definition induced_riesz_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_riesz_norm ? ? (induced_norm ? V) (is_riesz_norm_induced_norm ? V). + +definition distance_induced_by_integral ≝ + λR:real.λV:integration_riesz_space R. + induced_distance ? ? (induced_norm R V). + +definition is_complete_integration_riesz_space ≝ + λR:real.λV:integration_riesz_space R. + is_complete ? ? (distance_induced_by_integral ? V). + +record complete_integration_riesz_space (R:real) : Type ≝ + { cirz_integration_riesz_space:> integration_riesz_space R; + cirz_complete_integration_riesz_space_property: + is_complete_integration_riesz_space ? cirz_integration_riesz_space + }. + +(* now we prove that any complete integration riesz space is an L-space *) + +(*theorem is_l_space_l_space_induced_by_integral: + ∀R:real.∀V:complete_integration_riesz_space R. + is_l_space ? ? (induced_riesz_norm ? V). + intros; + constructor 1; + [ apply cirz_complete_integration_riesz_space_property + | intros; + unfold induced_riesz_norm; + simplify; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ]. +qed.*) + +(**************************** f-ALGEBRAS ********************************) + record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ { (* ring properties *) @@ -99,80 +305,64 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) }. -record algebra (K: field) (V:vector_space K) : Type \def - { a_mult: V → V → V; - a_one: V; - a_algebra_properties: is_algebra K V a_mult a_one +record algebra (K: field) : Type \def + { a_vector_space:> vector_space K; + a_one: a_vector_space; + a_mult: a_vector_space → a_vector_space → a_vector_space; + a_algebra_properties: is_algebra ? ? a_mult a_one }. interpretation "Algebra product" 'times a b = - (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). - -interpretation "Algebra one" 'one = - (cic:/matita/integration_algebras/a_one.con _ _ _). + (cic:/matita/integration_algebras/a_mult.con _ a b). definition ring_of_algebra ≝ - λK.λV:vector_space K.λA:algebra ? V. - mk_ring V (a_mult ? ? A) (a_one ? ? A) - (a_ring ? ? ? ? (a_algebra_properties ? ? A)). + λK.λA:algebra K. + mk_ring A (a_mult ? A) (a_one ? A) + (a_ring ? ? ? ? (a_algebra_properties ? A)). coercion cic:/matita/integration_algebras/ring_of_algebra.con. -record is_f_algebra (K) (S:archimedean_riesz_space K) (A:algebra ? S) : Prop -\def -{ compat_mult_le: - ∀f,g:S. - le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? A f g); +record pre_f_algebra (K:ordered_field_ch0) : Type ≝ + { fa_archimedean_riesz_space:> archimedean_riesz_space K; + fa_algebra_: algebra K; + fa_with: a_vector_space ? fa_algebra_ = rs_vector_space ? fa_archimedean_riesz_space + }. + +lemma fa_algebra: ∀K:ordered_field_ch0.pre_f_algebra K → algebra K. + intros (K A); + apply mk_algebra; + [ apply (rs_vector_space ? A) + | elim daemon + | elim daemon + | elim daemon + ] + qed. + +coercion cic:/matita/integration_algebras/fa_algebra.con. + +record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝ +{ compat_mult_le: ∀f,g:A.0 ≤ f → 0 ≤ g → 0 ≤ f*g; compat_mult_meet: - ∀f,g,h:S. - meet ? S f g = 0 → meet ? S (a_mult ? ? A h f) g = 0 + ∀f,g,h:A.(f ∧ g) = 0 → ((h*f) ∧ g) = 0 }. -record f_algebra (K:ordered_field_ch0) : Type \def -{ fa_archimedean_riesz_space:> archimedean_riesz_space K; - fa_algebra:> algebra ? fa_archimedean_riesz_space; - fa_f_algebra_properties: is_f_algebra ? fa_archimedean_riesz_space fa_algebra +record f_algebra (K:ordered_field_ch0) : Type ≝ +{ fa_pre_f_algebra:> pre_f_algebra K; + fa_f_algebra_properties: is_f_algebra ? fa_pre_f_algebra }. (* to be proved; see footnote 2 in the paper by Spitters *) -axiom symmetric_a_mult: ∀K.∀A:f_algebra K. symmetric ? (a_mult ? ? A). - - -definition tends_to : ∀F:ordered_field_ch0.∀f:nat→F.∀l:F.Prop. - alias symbol "leq" = "Ordered field le". - alias id "le" = "cic:/matita/nat/orders/le.ind#xpointer(1/1)". - apply - (λF:ordered_field_ch0.λf:nat → F.λl:F. - ∀n:nat.∃m:nat.∀j:nat. le m j → - l - (inv F (sum_field F (S n)) ?) ≤ f j ∧ - f j ≤ l + (inv F (sum_field F (S n)) ?)); - apply not_eq_sum_field_zero; - unfold; - auto new. -qed. +axiom symmetric_a_mult: + ∀K.∀A:f_algebra K. symmetric ? (a_mult ? A). -record is_integral (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop -\def - { i_positive: ∀f:Type_OF_f_algebra ? A. le ? (lattice_OF_f_algebra ? A) 0 f → of_le K 0 (I f); - i_linear1: ∀f,g:Type_OF_f_algebra ? A. I (f + g) = I f + I g; - i_linear2: ∀f:A.∀k:K. I (emult ? A k f) = k*(I f) +record integration_f_algebra (R:real) : Type \def + { ifa_integration_riesz_space:> integration_riesz_space R; + ifa_f_algebra_: f_algebra R; + ifa_with: + fa_archimedean_riesz_space ? ifa_f_algebra_ = + irs_archimedean_riesz_space ? ifa_integration_riesz_space }. -(* Here we are avoiding a construction (the quotient space to define - f=g iff I(|f-g|)=0 *) -record is_integration_f_algebra (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop -\def - { ifa_integral: is_integral ? ? I; - ifa_limit1: - ∀f:A. tends_to ? (λn.I(meet ? A f ((sum_field K n)*(a_one ? ? A)))) (I f); - ifa_limit2: - ∀f:A. - tends_to ? - (λn. - I (meet ? A f - ((inv ? (sum_field K (S n)) - (not_eq_sum_field_zero K (S n) (le_S_S O n (le_O_n n))) - ) * (a_one ? ? A)))) 0; - ifa_quotient_space1: - ∀f,g:A. f=g → I(absolute_value ? A (f - g)) = 0 - }. +axiom ifa_f_algebra: ∀R:real.integration_f_algebra R → f_algebra R. + +coercion cic:/matita/integration_algebras/ifa_f_algebra.con.