X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fintegration_algebras.ma;h=cbe629dac0ca6654fa5cca095a13317f4851ef3f;hb=2030804124914a9b2155c911d4b835fd67c26d4e;hp=ca43093807d3eceabebda8b75c0dfc8a068a5215;hpb=dd3157d36216486d914a97cfff7a9cd34f009ffe;p=helm.git diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index ca4309380..cbe629dac 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -19,40 +19,117 @@ include "lattices.ma". (**************** Riesz Spaces ********************) -record is_riesz_space (K:ordered_field_ch0) (V:vector_space K) - (L:lattice V) -: Prop -\def - { rs_compat_le_plus: ∀f,g,h:V. os_le ? L f g → os_le ? L (f+h) (g+h); - rs_compat_le_times: ∀a:K.∀f:V. zero K≤a → os_le ? L (zero V) f → os_le ? L (zero V) (a*f) +record pre_riesz_space (K:ordered_field_ch0) : Type \def + { rs_vector_space:> vector_space K; + rs_lattice_: lattice; + rs_ordered_abelian_group_: ordered_abelian_group; + rs_with1: + og_abelian_group rs_ordered_abelian_group_ = vs_abelian_group ? rs_vector_space; + rs_with2: + og_ordered_set rs_ordered_abelian_group_ = ordered_set_of_lattice rs_lattice_ + }. + +lemma rs_lattice: ∀K.pre_riesz_space K → lattice. + intros (K V); + cut (os_carrier (rs_lattice_ ? V) = V); + [ apply mk_lattice; + [ apply (carrier V) + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_join + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_meet + | apply + (eq_rect' ? ? + (λa:Type.λH:os_carrier (rs_lattice_ ? V)=a. + is_lattice a + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_join (rs_lattice_ K V)) a H) + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_meet (rs_lattice_ K V)) a H)) + ? ? Hcut); + simplify; + apply l_lattice_properties + ] + | transitivity (os_carrier (rs_ordered_abelian_group_ ? V)); + [ apply (eq_f ? ? os_carrier); + symmetry; + apply rs_with2 + | apply (eq_f ? ? carrier); + apply rs_with1 + ] + ]. +qed. + +coercion cic:/matita/integration_algebras/rs_lattice.con. + +lemma rs_ordered_abelian_group: ∀K.pre_riesz_space K → ordered_abelian_group. + intros (K V); + apply mk_ordered_abelian_group; + [ apply mk_pre_ordered_abelian_group; + [ apply (vs_abelian_group ? (rs_vector_space ? V)) + | apply (ordered_set_of_lattice (rs_lattice ? V)) + | reflexivity + ] + | simplify; + generalize in match + (og_ordered_abelian_group_properties (rs_ordered_abelian_group_ ? V)); + intro P; + unfold in P; + elim daemon(* + apply + (eq_rect ? ? + (λO:ordered_set. + ∀f,g,h. + os_le O f g → + os_le O + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with2 ? V)); + apply + (eq_rect ? ? + (λG:abelian_group. + ∀f,g,h. + os_le (ordered_set_OF_pre_riesz_space K V) f g → + os_le (ordered_set_OF_pre_riesz_space K V) + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with1 ? V)); + simplify; + apply og_ordered_abelian_group_properties*) + ] +qed. + +coercion cic:/matita/integration_algebras/rs_ordered_abelian_group.con. + +record is_riesz_space (K:ordered_field_ch0) (V:pre_riesz_space K) : Prop ≝ + { rs_compat_le_times: ∀a:K.∀f:V. 0≤a → 0≤f → 0≤a*f }. record riesz_space (K:ordered_field_ch0) : Type \def - { rs_vector_space:> vector_space K; - rs_lattice:> lattice rs_vector_space; - rs_riesz_space_properties: is_riesz_space ? rs_vector_space rs_lattice + { rs_pre_riesz_space:> pre_riesz_space K; + rs_riesz_space_properties: is_riesz_space ? rs_pre_riesz_space }. record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝ - { positive: ∀u:V. os_le ? V 0 u → os_le ? K 0 (T u); + { positive: ∀u:V. 0≤u → 0≤T u; linear1: ∀u,v:V. T (u+v) = T u + T v; linear2: ∀u:V.∀k:K. T (k*u) = k*(T u) }. record sequentially_order_continuous (K) (V:riesz_space K) (T:V→K) : Prop ≝ { soc_incr: - ∀a:nat→V.∀l:V.is_increasing ? ? a → is_sup ? V a l → - is_increasing ? K (λn.T (a n)) ∧ tends_to ? (λn.T (a n)) (T l) + ∀a:nat→V.∀l:V.is_increasing ? a → is_sup V a l → + is_increasing K (λn.T (a n)) ∧ tends_to ? (λn.T (a n)) (T l) }. -definition absolute_value \def λK.λS:riesz_space K.λf.join ? S f (-f). +definition absolute_value ≝ λK.λS:riesz_space K.λf:S.f ∨ -f. (**************** Normed Riesz spaces ****************************) definition is_riesz_norm ≝ λR:real.λV:riesz_space R.λnorm:norm R V. - ∀f,g:V. os_le ? V (absolute_value ? V f) (absolute_value ? V g) → - os_le ? R (n_function R V norm f) (n_function R V norm g). + ∀f,g:V. absolute_value ? V f ≤ absolute_value ? V g → + n_function R V norm f ≤ n_function R V norm g. record riesz_norm (R:real) (V:riesz_space R) : Type ≝ { rn_norm:> norm R V; @@ -78,9 +155,8 @@ record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝ record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop \def { ars_archimedean: ∃u:S.∀n.∀a.∀p:n > O. - os_le ? S - (absolute_value ? S a) - ((inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u) → + absolute_value ? S a ≤ + (inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u → a = 0 }. @@ -99,7 +175,7 @@ definition is_weak_unit ≝ 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces only. We pick this definition for now. *) λR:real.λV:archimedean_riesz_space R.λe:V. - ∀v:V. lt ? V 0 v → lt ? V 0 (meet ? V v e). + ∀v:V. 0 vector_space K; + a_one: a_vector_space; + a_mult: a_vector_space → a_vector_space → a_vector_space; a_algebra_properties: is_algebra ? ? a_mult a_one }. interpretation "Algebra product" 'times a b = - (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). + (cic:/matita/integration_algebras/a_mult.con _ a b). definition ring_of_algebra ≝ - λK.λV:vector_space K.λone:V.λA:algebra ? V one. - mk_ring V (a_mult ? ? ? A) one - (a_ring ? ? ? ? (a_algebra_properties ? ? ? A)). + λK.λA:algebra K. + mk_ring A (a_mult ? A) (a_one ? A) + (a_ring ? ? ? ? (a_algebra_properties ? A)). coercion cic:/matita/integration_algebras/ring_of_algebra.con. -record is_f_algebra (K) (S:archimedean_riesz_space K) (one: S) - (A:algebra ? S one) : Prop -\def -{ compat_mult_le: - ∀f,g:S. - le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? ? A f g); +record pre_f_algebra (K:ordered_field_ch0) : Type ≝ + { fa_archimedean_riesz_space:> archimedean_riesz_space K; + fa_algebra_: algebra K; + fa_with: a_vector_space ? fa_algebra_ = rs_vector_space ? fa_archimedean_riesz_space + }. + +lemma fa_algebra: ∀K:ordered_field_ch0.pre_f_algebra K → algebra K. + intros (K A); + apply mk_algebra; + [ apply (rs_vector_space ? A) + | elim daemon + | elim daemon + | elim daemon + ] + qed. + +coercion cic:/matita/integration_algebras/fa_algebra.con. + +record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝ +{ compat_mult_le: ∀f,g:A.0 ≤ f → 0 ≤ g → 0 ≤ f*g; compat_mult_meet: - ∀f,g,h:S. - meet ? S f g = 0 → meet ? S (a_mult ? ? ? A h f) g = 0 + ∀f,g,h:A.(f ∧ g) = 0 → ((h*f) ∧ g) = 0 }. -record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) (one:R) : -Type \def -{ fa_algebra:> algebra ? R one; - fa_f_algebra_properties: is_f_algebra ? ? ? fa_algebra +record f_algebra (K:ordered_field_ch0) : Type ≝ +{ fa_pre_f_algebra:> pre_f_algebra K; + fa_f_algebra_properties: is_f_algebra ? fa_pre_f_algebra }. (* to be proved; see footnote 2 in the paper by Spitters *) axiom symmetric_a_mult: - ∀K,R,one.∀A:f_algebra K R one. symmetric ? (a_mult ? ? ? A). + ∀K.∀A:f_algebra K. symmetric ? (a_mult ? A). record integration_f_algebra (R:real) : Type \def { ifa_integration_riesz_space:> integration_riesz_space R; - ifa_f_algebra:> - f_algebra ? ifa_integration_riesz_space - (irs_unit ? ifa_integration_riesz_space) + ifa_f_algebra_: f_algebra R; + ifa_with: + fa_archimedean_riesz_space ? ifa_f_algebra_ = + irs_archimedean_riesz_space ? ifa_integration_riesz_space }. + +axiom ifa_f_algebra: ∀R:real.integration_f_algebra R → f_algebra R. + +coercion cic:/matita/integration_algebras/ifa_f_algebra.con.