X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fintegration_algebras.ma;h=cbe629dac0ca6654fa5cca095a13317f4851ef3f;hb=656cb8eb95d1fa723cbd45c8ab4069764aa539a8;hp=0339a088929b0b5b6850770930867bab35b2f009;hpb=1238984f493ee077187fcbe1f6ca416da9d43bd7;p=helm.git diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 0339a0889..cbe629dac 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -14,347 +14,287 @@ set "baseuri" "cic:/matita/integration_algebras/". -include "higher_order_defs/functions.ma". -include "nat/nat.ma". -include "nat/orders.ma". - -definition left_neutral \def λC,op.λe:C. ∀x:C. op e x = x. - -definition right_neutral \def λC,op. λe:C. ∀x:C. op x e=x. +include "vector_spaces.ma". +include "lattices.ma". + +(**************** Riesz Spaces ********************) + +record pre_riesz_space (K:ordered_field_ch0) : Type \def + { rs_vector_space:> vector_space K; + rs_lattice_: lattice; + rs_ordered_abelian_group_: ordered_abelian_group; + rs_with1: + og_abelian_group rs_ordered_abelian_group_ = vs_abelian_group ? rs_vector_space; + rs_with2: + og_ordered_set rs_ordered_abelian_group_ = ordered_set_of_lattice rs_lattice_ + }. -definition left_inverse \def λC,op.λe:C.λinv:C→C. ∀x:C. op (inv x) x = e. +lemma rs_lattice: ∀K.pre_riesz_space K → lattice. + intros (K V); + cut (os_carrier (rs_lattice_ ? V) = V); + [ apply mk_lattice; + [ apply (carrier V) + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_join + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_meet + | apply + (eq_rect' ? ? + (λa:Type.λH:os_carrier (rs_lattice_ ? V)=a. + is_lattice a + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_join (rs_lattice_ K V)) a H) + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_meet (rs_lattice_ K V)) a H)) + ? ? Hcut); + simplify; + apply l_lattice_properties + ] + | transitivity (os_carrier (rs_ordered_abelian_group_ ? V)); + [ apply (eq_f ? ? os_carrier); + symmetry; + apply rs_with2 + | apply (eq_f ? ? carrier); + apply rs_with1 + ] + ]. +qed. -definition right_inverse \def λC,op.λe:C.λ inv: C→ C. ∀x:C. op x (inv x)=e. +coercion cic:/matita/integration_algebras/rs_lattice.con. + +lemma rs_ordered_abelian_group: ∀K.pre_riesz_space K → ordered_abelian_group. + intros (K V); + apply mk_ordered_abelian_group; + [ apply mk_pre_ordered_abelian_group; + [ apply (vs_abelian_group ? (rs_vector_space ? V)) + | apply (ordered_set_of_lattice (rs_lattice ? V)) + | reflexivity + ] + | simplify; + generalize in match + (og_ordered_abelian_group_properties (rs_ordered_abelian_group_ ? V)); + intro P; + unfold in P; + elim daemon(* + apply + (eq_rect ? ? + (λO:ordered_set. + ∀f,g,h. + os_le O f g → + os_le O + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with2 ? V)); + apply + (eq_rect ? ? + (λG:abelian_group. + ∀f,g,h. + os_le (ordered_set_OF_pre_riesz_space K V) f g → + os_le (ordered_set_OF_pre_riesz_space K V) + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with1 ? V)); + simplify; + apply og_ordered_abelian_group_properties*) + ] +qed. -definition distributive_left ≝ - λA:Type.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f x (g y z) = g (f x y) (f x z). +coercion cic:/matita/integration_algebras/rs_ordered_abelian_group.con. -definition distributive_right ≝ - λA:Type.λf:A→A→A.λg:A→A→A. - ∀x,y,z. f (g x y) z = g (f x z) (f y z). +record is_riesz_space (K:ordered_field_ch0) (V:pre_riesz_space K) : Prop ≝ + { rs_compat_le_times: ∀a:K.∀f:V. 0≤a → 0≤f → 0≤a*f + }. -record is_abelian_group (C:Type) (plus:C→C→C) (zero:C) (opp:C→C) : Prop \def - { (* abelian additive semigroup properties *) - plus_assoc_: associative ? plus; - plus_comm_: symmetric ? plus; - (* additive monoid properties *) - zero_neutral_: left_neutral ? plus zero; - (* additive group properties *) - opp_inverse_: left_inverse ? plus zero opp +record riesz_space (K:ordered_field_ch0) : Type \def + { rs_pre_riesz_space:> pre_riesz_space K; + rs_riesz_space_properties: is_riesz_space ? rs_pre_riesz_space }. -record abelian_group : Type \def - { carrier:> Type; - plus: carrier → carrier → carrier; - zero: carrier; - opp: carrier → carrier; - ag_abelian_group_properties: is_abelian_group ? plus zero opp +record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { positive: ∀u:V. 0≤u → 0≤T u; + linear1: ∀u,v:V. T (u+v) = T u + T v; + linear2: ∀u:V.∀k:K. T (k*u) = k*(T u) }. -notation "0" with precedence 89 -for @{ 'zero }. +record sequentially_order_continuous (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { soc_incr: + ∀a:nat→V.∀l:V.is_increasing ? a → is_sup V a l → + is_increasing K (λn.T (a n)) ∧ tends_to ? (λn.T (a n)) (T l) + }. -interpretation "Ring zero" 'zero = - (cic:/matita/integration_algebras/zero.con _). +definition absolute_value ≝ λK.λS:riesz_space K.λf:S.f ∨ -f. -interpretation "Ring plus" 'plus a b = - (cic:/matita/integration_algebras/plus.con _ a b). +(**************** Normed Riesz spaces ****************************) -interpretation "Ring opp" 'uminus a = - (cic:/matita/integration_algebras/opp.con _ a). - -theorem plus_assoc: ∀G:abelian_group. associative ? (plus G). - intro; - apply (plus_assoc_ ? ? ? ? (ag_abelian_group_properties G)). -qed. +definition is_riesz_norm ≝ + λR:real.λV:riesz_space R.λnorm:norm R V. + ∀f,g:V. absolute_value ? V f ≤ absolute_value ? V g → + n_function R V norm f ≤ n_function R V norm g. -theorem plus_comm: ∀G:abelian_group. symmetric ? (plus G). - intro; - apply (plus_comm_ ? ? ? ? (ag_abelian_group_properties G)). -qed. +record riesz_norm (R:real) (V:riesz_space R) : Type ≝ + { rn_norm:> norm R V; + rn_riesz_norm_property: is_riesz_norm ? ? rn_norm + }. -theorem zero_neutral: ∀G:abelian_group. left_neutral ? (plus G) 0. - intro; - apply (zero_neutral_ ? ? ? ? (ag_abelian_group_properties G)). -qed. +(*CSC: non fa la chiusura delle coercion verso funclass *) +definition rn_function ≝ + λR:real.λV:riesz_space R.λnorm:riesz_norm ? V. + n_function R V (rn_norm ? ? norm). -theorem opp_inverse: ∀G:abelian_group. left_inverse ? (plus G) 0 (opp G). - intro; - apply (opp_inverse_ ? ? ? ? (ag_abelian_group_properties G)). -qed. +coercion cic:/matita/integration_algebras/rn_function.con 1. -lemma cancellationlaw: ∀G:abelian_group.∀x,y,z:G. x+y=x+z → y=z. -intros; -generalize in match (eq_f ? ? (λa.-x +a) ? ? H); -intros; clear H; -rewrite < plus_assoc in H1; -rewrite < plus_assoc in H1; -rewrite > opp_inverse in H1; -rewrite > zero_neutral in H1; -rewrite > zero_neutral in H1; -assumption. -qed. +(************************** L-SPACES *************************************) +(* +record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝ + { ls_banach: is_complete ? V (induced_distance ? ? norm); + ls_linear: ∀f,g:V. le ? V 0 f → le ? V 0 g → norm (f+g) = norm f + norm g + }. +*) +(******************** ARCHIMEDEAN RIESZ SPACES ***************************) -(****************************** rings *********************************) +record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop +\def + { ars_archimedean: ∃u:S.∀n.∀a.∀p:n > O. + absolute_value ? S a ≤ + (inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u → + a = 0 + }. -record is_ring (G:abelian_group) (mult:G→G→G) (one:G) : Prop -≝ - { (* multiplicative monoid properties *) - mult_assoc_: associative ? mult; - one_neutral_left_: left_neutral ? mult one; - one_neutral_right_: right_neutral ? mult one; - (* ring properties *) - mult_plus_distr_left_: distributive_left ? mult (plus G); - mult_plus_distr_right_: distributive_right ? mult (plus G); - not_eq_zero_one_: (0 ≠ one) - }. - -record ring : Type \def - { r_abelian_group:> abelian_group; - mult: r_abelian_group → r_abelian_group → r_abelian_group; - one: r_abelian_group; - r_ring_properties: is_ring r_abelian_group mult one +record archimedean_riesz_space (K:ordered_field_ch0) : Type \def + { ars_riesz_space:> riesz_space K; + ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space }. -theorem mult_assoc: ∀R:ring.associative ? (mult R). - intros; - apply (mult_assoc_ ? ? ? (r_ring_properties R)). -qed. +definition is_weak_unit ≝ +(* This definition is by Spitters. He cites Fremlin 353P, but: + 1. that theorem holds only in f-algebras (as in Spitters, but we are + defining it on Riesz spaces) + 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? + λR:real.λV:archimedean_riesz_space R.λunit: V. + ∀x:V. meet x unit = 0 → u = 0. + 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces + only. We pick this definition for now. +*) λR:real.λV:archimedean_riesz_space R.λe:V. + ∀v:V. 0 archimedean_riesz_space R; + irs_unit: irs_archimedean_riesz_space; + irs_weak_unit: is_weak_unit ? ? irs_unit; + integral: irs_archimedean_riesz_space → R; + irs_positive_linear: is_positive_linear ? ? integral; + irs_limit1: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn.integral (f ∧ ((sum_field R n)*irs_unit))) + (integral f); + irs_limit2: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn. + integral (f ∧ + ((inv ? (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))) + ) * irs_unit))) 0; + irs_quotient_space1: + ∀f,g:irs_archimedean_riesz_space. + integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 → f=g + }. -theorem one_neutral_left: ∀R:ring.left_neutral ? (mult R) (one R). - intros; - apply (one_neutral_left_ ? ? ? (r_ring_properties R)). -qed. +definition induced_norm_fun ≝ + λR:real.λV:integration_riesz_space R.λf:V. + integral ? V (absolute_value ? ? f). -theorem one_neutral_right: ∀R:ring.right_neutral ? (mult R) (one R). +lemma induced_norm_is_norm: + ∀R:real.∀V:integration_riesz_space R.is_norm R V (induced_norm_fun ? V). + elim daemon.(* intros; - apply (one_neutral_right_ ? ? ? (r_ring_properties R)). + apply mk_is_norm; + [ apply mk_is_semi_norm; + [ unfold induced_norm_fun; + intros; + apply positive; + [ apply (irs_positive_linear ? V) + | (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun; + (* facile *) + elim daemon + | intros; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm_fun in H; + apply irs_quotient_space1; + unfold minus; + rewrite < plus_comm; + rewrite < eq_zero_opp_zero; + rewrite > zero_neutral; + assumption + ].*) qed. -theorem mult_plus_distr_left: ∀R:ring.distributive_left ? (mult R) (plus R). - intros; - apply (mult_plus_distr_left_ ? ? ? (r_ring_properties R)). -qed. +definition induced_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_norm ? ? (induced_norm_fun ? V) (induced_norm_is_norm ? V). -theorem mult_plus_distr_right: ∀R:ring.distributive_right ? (mult R) (plus R). +lemma is_riesz_norm_induced_norm: + ∀R:real.∀V:integration_riesz_space R. + is_riesz_norm ? ? (induced_norm ? V). intros; - apply (mult_plus_distr_right_ ? ? ? (r_ring_properties R)). -qed. - -theorem not_eq_zero_one: ∀R:ring.0 ≠ one R. + unfold is_riesz_norm; intros; - apply (not_eq_zero_one_ ? ? ? (r_ring_properties R)). + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon. qed. -interpretation "Ring mult" 'times a b = - (cic:/matita/integration_algebras/mult.con _ a b). +definition induced_riesz_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_riesz_norm ? ? (induced_norm ? V) (is_riesz_norm_induced_norm ? V). -notation "1" with precedence 89 -for @{ 'one }. - -interpretation "Field one" 'one = - (cic:/matita/integration_algebras/one.con _). - -lemma eq_mult_zero_x_zero: ∀R:ring.∀x:R.0*x=0. - intros; - generalize in match (zero_neutral R 0); intro; - generalize in match (eq_f ? ? (λy.y*x) ? ? H); intro; clear H; - rewrite > mult_plus_distr_right in H1; - generalize in match (eq_f ? ? (λy.-(0*x)+y) ? ? H1); intro; clear H1; - rewrite < plus_assoc in H; - rewrite > opp_inverse in H; - rewrite > zero_neutral in H; - assumption. -qed. +definition distance_induced_by_integral ≝ + λR:real.λV:integration_riesz_space R. + induced_distance ? ? (induced_norm R V). -lemma eq_mult_x_zero_zero: ∀R:ring.∀x:R.x*0=0. -intros; -generalize in match (zero_neutral R 0); -intro; -generalize in match (eq_f ? ? (\lambda y.x*y) ? ? H); intro; clear H; -rewrite > mult_plus_distr_left in H1; -generalize in match (eq_f ? ? (\lambda y. (-(x*0)) +y) ? ? H1);intro; -clear H1; -rewrite < plus_assoc in H; -rewrite > opp_inverse in H; -rewrite > zero_neutral in H; -assumption. -qed. +definition is_complete_integration_riesz_space ≝ + λR:real.λV:integration_riesz_space R. + is_complete ? ? (distance_induced_by_integral ? V). -record is_field (R:ring) (inv:∀x:R.x ≠ 0 → R) : Prop -≝ - { (* multiplicative abelian properties *) - mult_comm_: symmetric ? (mult R); - (* multiplicative group properties *) - inv_inverse_: ∀x.∀p: x ≠ 0. mult ? (inv x p) x = 1 +record complete_integration_riesz_space (R:real) : Type ≝ + { cirz_integration_riesz_space:> integration_riesz_space R; + cirz_complete_integration_riesz_space_property: + is_complete_integration_riesz_space ? cirz_integration_riesz_space }. -lemma opp_opp: \forall R:ring. \forall x:R. (-(-x))=x. -intros; -apply (cancellationlaw ? (-x) ? ?); -rewrite > (opp_inverse R x); -rewrite > plus_comm; -rewrite > opp_inverse; -reflexivity. -qed. - +(* now we prove that any complete integration riesz space is an L-space *) -let rec sum (C:Type) (plus:C→C→C) (zero,one:C) (n:nat) on n ≝ - match n with - [ O ⇒ zero - | (S m) ⇒ plus one (sum C plus zero one m) +(*theorem is_l_space_l_space_induced_by_integral: + ∀R:real.∀V:complete_integration_riesz_space R. + is_l_space ? ? (induced_riesz_norm ? V). + intros; + constructor 1; + [ apply cirz_complete_integration_riesz_space_property + | intros; + unfold induced_riesz_norm; + simplify; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon ]. - -record field : Type \def - { f_ring:> ring; - inv: ∀x:f_ring. x ≠ 0 → f_ring; - field_properties: is_field f_ring inv - }. - -theorem mult_comm: ∀F:field.symmetric ? (mult F). - intro; - apply (mult_comm_ ? ? (field_properties F)). -qed. - -theorem inv_inverse: ∀F:field.∀x.∀p: x ≠ 0. mult ? (inv F x p) x = 1. - intro; - apply (inv_inverse_ ? ? (field_properties F)). -qed. - -definition sum_field ≝ - λF:field. sum ? (plus F) (zero F) (one F). - -record is_ordered_field_ch0 (F:field) (le:F→F→Prop) : Prop \def - { of_mult_compat: ∀a,b. le 0 a → le 0 b → le 0 (a*b); - of_plus_compat: ∀a,b,c. le a b → le (a+c) (b+c); - of_weak_tricotomy : ∀a,b. a≠b → le a b ∨ le b a; - (* 0 characteristics *) - of_char0: ∀n. n > O → sum ? (plus F) 0 1 n ≠ 0 - }. - -record ordered_field_ch0 : Type \def - { of_field:> field; - of_le: of_field → of_field → Prop; - of_ordered_field_properties:> is_ordered_field_ch0 of_field of_le - }. - -interpretation "Ordered field le" 'leq a b = - (cic:/matita/integration_algebras/of_le.con _ a b). - -definition lt \def λF:ordered_field_ch0.λa,b:F.a ≤ b ∧ a ≠ b. - -interpretation "Ordered field lt" 'lt a b = - (cic:/matita/integration_algebras/lt.con _ a b). - -(*incompleto -lemma le_zero_x_to_le_opp_x_zero: ∀F:ordered_field_ch0.∀x:F. 0 ≤ x → -x ≤ 0. -intros; - generalize in match (of_plus_compat ? ? ? ? ? ? ? ? F ? ? (-x) H); intro; - rewrite > (zero_neutral ? ? ? ? F) in H1; - rewrite > (plus_comm ? ? ? ? F) in H1; - rewrite > (opp_inverse ? ? ? ? F) in H1; - - assumption. -qed.*) - -axiom le_x_zero_to_le_zero_opp_x: ∀F:ordered_field_ch0.∀x:F. x ≤ 0 → 0 ≤ -x. -(* intros; - generalize in match (of_plus_compat ? ? ? ? ? ? ? ? F ? ? (-x) H); intro; - rewrite > (zero_neutral ? ? ? ? F) in H1; - rewrite > (plus_comm ? ? ? ? F) in H1; - rewrite > (opp_inverse ? ? ? ? F) in H1; - assumption. qed.*) -(* -lemma eq_opp_x_times_opp_one_x: ∀F:ordered_field_ch0.∀x:F.-x = -1*x. - intros; - -lemma not_eq_x_zero_to_lt_zero_mult_x_x: - ∀F:ordered_field_ch0.∀x:F. x ≠ 0 → 0 < x * x. - intros; - elim (of_weak_tricotomy ? ? ? ? ? ? ? ? F ? ? H); - [ generalize in match (le_x_zero_to_le_zero_opp_x F ? H1); intro; - generalize in match (of_mult_compat ? ? ? ? ? ? ? ? F ? ? H2 H2); intro; -*) - -axiom not_eq_sum_field_zero: ∀F,n. n > O → sum_field F n ≠ 0. - -record is_vector_space (K: field) (G:abelian_group) (emult:K→G→G) : Prop -≝ - { vs_nilpotent: ∀v. emult 0 v = 0; - vs_neutral: ∀v. emult 1 v = v; - vs_distributive: ∀a,b,v. emult (a + b) v = (emult a v) + (emult b v); - vs_associative: ∀a,b,v. emult (a * b) v = emult a (emult b v) - }. - -record vector_space (K:field): Type \def -{ vs_abelian_group :> abelian_group; - emult: K → vs_abelian_group → vs_abelian_group; - vs_vector_space_properties :> is_vector_space K vs_abelian_group emult -}. - -interpretation "Vector space external product" 'times a b = - (cic:/matita/integration_algebras/emult.con _ _ a b). - -record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def - { (* abelian semigroup properties *) - l_comm_j: symmetric ? join; - l_associative_j: associative ? join; - l_comm_m: symmetric ? meet; - l_associative_m: associative ? meet; - (* other properties *) - l_adsorb_j_m: ∀f,g. join f (meet f g) = f; - l_adsorb_m_j: ∀f,g. meet f (join f g) = f - }. - -record lattice (C:Type) : Type \def - { join: C → C → C; - meet: C → C → C; - l_lattice_properties: is_lattice ? join meet - }. - -definition le \def λC:Type.λL:lattice C.λf,g. meet ? L f g = f. - -interpretation "Lattice le" 'leq a b = - (cic:/matita/integration_algebras/le.con _ _ a b). - -definition carrier_of_lattice ≝ - λC:Type.λL:lattice C.C. - -record is_riesz_space (K:ordered_field_ch0) (V:vector_space K) - (L:lattice (Type_OF_vector_space ? V)) -: Prop -\def - { rs_compat_le_plus: ∀f,g,h. le ? L f g → le ? L (f+h) (g+h); - rs_compat_le_times: ∀a:K.∀f. of_le ? 0 a → le ? L 0 f → le ? L 0 (a*f) - }. - -record riesz_space : Type \def - { rs_ordered_field_ch0: ordered_field_ch0; - rs_vector_space:> vector_space rs_ordered_field_ch0; - rs_lattice:> lattice rs_vector_space; - rs_riesz_space_properties: is_riesz_space ? rs_vector_space rs_lattice - }. - -definition absolute_value \def λS:riesz_space.λf.join ? S f (-f). - -record is_archimedean_riesz_space (S:riesz_space) : Prop -\def - { ars_archimedean: ∃u.∀n.∀a.∀p:n > O. - le ? S - (absolute_value S a) - (emult ? S - (inv ? (sum_field (rs_ordered_field_ch0 S) n) (not_eq_sum_field_zero ? n p)) - u) → - a = 0 - }. - -record archimedean_riesz_space : Type \def - { ars_riesz_space:> riesz_space; - ars_archimedean_property: is_archimedean_riesz_space ars_riesz_space - }. +(**************************** f-ALGEBRAS ********************************) record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ @@ -365,41 +305,64 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) }. -record algebra (K: field) (V:vector_space K) : Type \def - { a_mult: V → V → V; - a_one: V; - a_algebra_properties: is_algebra K V a_mult a_one +record algebra (K: field) : Type \def + { a_vector_space:> vector_space K; + a_one: a_vector_space; + a_mult: a_vector_space → a_vector_space → a_vector_space; + a_algebra_properties: is_algebra ? ? a_mult a_one }. interpretation "Algebra product" 'times a b = - (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). - -interpretation "Field one" 'one = - (cic:/matita/integration_algebras/a_one.con _). + (cic:/matita/integration_algebras/a_mult.con _ a b). definition ring_of_algebra ≝ - λK.λV:vector_space K.λA:algebra ? V. - mk_ring V (a_mult ? ? A) (a_one ? ? A) - (a_ring ? ? ? ? (a_algebra_properties ? ? A)). + λK.λA:algebra K. + mk_ring A (a_mult ? A) (a_one ? A) + (a_ring ? ? ? ? (a_algebra_properties ? A)). coercion cic:/matita/integration_algebras/ring_of_algebra.con. -record is_f_algebra (S:archimedean_riesz_space) - (A:algebra (rs_ordered_field_ch0 (ars_riesz_space S)) S) : Prop -\def -{ compat_mult_le: - ∀f,g:S. - le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? A f g); +record pre_f_algebra (K:ordered_field_ch0) : Type ≝ + { fa_archimedean_riesz_space:> archimedean_riesz_space K; + fa_algebra_: algebra K; + fa_with: a_vector_space ? fa_algebra_ = rs_vector_space ? fa_archimedean_riesz_space + }. + +lemma fa_algebra: ∀K:ordered_field_ch0.pre_f_algebra K → algebra K. + intros (K A); + apply mk_algebra; + [ apply (rs_vector_space ? A) + | elim daemon + | elim daemon + | elim daemon + ] + qed. + +coercion cic:/matita/integration_algebras/fa_algebra.con. + +record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝ +{ compat_mult_le: ∀f,g:A.0 ≤ f → 0 ≤ g → 0 ≤ f*g; compat_mult_meet: - ∀f,g,h:S. - meet ? S f g = 0 → meet ? S (a_mult ? ? A h f) g = 0 + ∀f,g,h:A.(f ∧ g) = 0 → ((h*f) ∧ g) = 0 }. -record f_algebra : Type \def -{ fa_archimedean_riesz_space:> archimedean_riesz_space; - fa_algebra:> algebra ? fa_archimedean_riesz_space; - fa_f_algebra_properties: is_f_algebra fa_archimedean_riesz_space fa_algebra +record f_algebra (K:ordered_field_ch0) : Type ≝ +{ fa_pre_f_algebra:> pre_f_algebra K; + fa_f_algebra_properties: is_f_algebra ? fa_pre_f_algebra }. (* to be proved; see footnote 2 in the paper by Spitters *) -axiom symmetric_a_mult: ∀A:f_algebra. symmetric ? (a_mult ? ? A). +axiom symmetric_a_mult: + ∀K.∀A:f_algebra K. symmetric ? (a_mult ? A). + +record integration_f_algebra (R:real) : Type \def + { ifa_integration_riesz_space:> integration_riesz_space R; + ifa_f_algebra_: f_algebra R; + ifa_with: + fa_archimedean_riesz_space ? ifa_f_algebra_ = + irs_archimedean_riesz_space ? ifa_integration_riesz_space + }. + +axiom ifa_f_algebra: ∀R:real.integration_f_algebra R → f_algebra R. + +coercion cic:/matita/integration_algebras/ifa_f_algebra.con.