X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fintegration_algebras.ma;h=cbe629dac0ca6654fa5cca095a13317f4851ef3f;hb=f2e7cb9757a151382ed3a70d1a610e8f729a6597;hp=534882ff2a54b31dbeef313f1740168959f1af92;hpb=08d8e4e422aafdc11e4230a87f2adee7facad809;p=helm.git diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 534882ff2..cbe629dac 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -14,145 +14,149 @@ set "baseuri" "cic:/matita/integration_algebras/". -include "reals.ma". +include "vector_spaces.ma". +include "lattices.ma". -record is_vector_space (K: field) (G:abelian_group) (emult:K→G→G) : Prop -≝ - { vs_nilpotent: ∀v. emult 0 v = 0; - vs_neutral: ∀v. emult 1 v = v; - vs_distributive: ∀a,b,v. emult (a + b) v = (emult a v) + (emult b v); - vs_associative: ∀a,b,v. emult (a * b) v = emult a (emult b v) - }. - -record vector_space (K:field): Type \def -{ vs_abelian_group :> abelian_group; - emult: K → vs_abelian_group → vs_abelian_group; - vs_vector_space_properties :> is_vector_space ? vs_abelian_group emult -}. +(**************** Riesz Spaces ********************) -interpretation "Vector space external product" 'times a b = - (cic:/matita/integration_algebras/emult.con _ _ a b). - -record is_semi_norm (R:real) (V: vector_space R) (semi_norm:V→R) : Prop \def - { sn_positive: ∀x:V. 0 ≤ semi_norm x; - sn_omogeneous: ∀a:R.∀x:V. semi_norm (a*x) = (abs ? a) * semi_norm x; - sn_triangle_inequality: ∀x,y:V. semi_norm (x + y) ≤ semi_norm x + semi_norm y +record pre_riesz_space (K:ordered_field_ch0) : Type \def + { rs_vector_space:> vector_space K; + rs_lattice_: lattice; + rs_ordered_abelian_group_: ordered_abelian_group; + rs_with1: + og_abelian_group rs_ordered_abelian_group_ = vs_abelian_group ? rs_vector_space; + rs_with2: + og_ordered_set rs_ordered_abelian_group_ = ordered_set_of_lattice rs_lattice_ }. -theorem eq_semi_norm_zero_zero: - ∀R:real.∀V:vector_space R.∀semi_norm:V→R. - is_semi_norm ? ? semi_norm → - semi_norm 0 = 0. - intros; - (* facile *) - elim daemon. +lemma rs_lattice: ∀K.pre_riesz_space K → lattice. + intros (K V); + cut (os_carrier (rs_lattice_ ? V) = V); + [ apply mk_lattice; + [ apply (carrier V) + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_join + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_meet + | apply + (eq_rect' ? ? + (λa:Type.λH:os_carrier (rs_lattice_ ? V)=a. + is_lattice a + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_join (rs_lattice_ K V)) a H) + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_meet (rs_lattice_ K V)) a H)) + ? ? Hcut); + simplify; + apply l_lattice_properties + ] + | transitivity (os_carrier (rs_ordered_abelian_group_ ? V)); + [ apply (eq_f ? ? os_carrier); + symmetry; + apply rs_with2 + | apply (eq_f ? ? carrier); + apply rs_with1 + ] + ]. qed. -record is_norm (R:real) (V:vector_space R) (norm:V → R) : Prop \def - { n_semi_norm:> is_semi_norm ? ? norm; - n_properness: ∀x:V. norm x = 0 → x = 0 - }. +coercion cic:/matita/integration_algebras/rs_lattice.con. + +lemma rs_ordered_abelian_group: ∀K.pre_riesz_space K → ordered_abelian_group. + intros (K V); + apply mk_ordered_abelian_group; + [ apply mk_pre_ordered_abelian_group; + [ apply (vs_abelian_group ? (rs_vector_space ? V)) + | apply (ordered_set_of_lattice (rs_lattice ? V)) + | reflexivity + ] + | simplify; + generalize in match + (og_ordered_abelian_group_properties (rs_ordered_abelian_group_ ? V)); + intro P; + unfold in P; + elim daemon(* + apply + (eq_rect ? ? + (λO:ordered_set. + ∀f,g,h. + os_le O f g → + os_le O + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with2 ? V)); + apply + (eq_rect ? ? + (λG:abelian_group. + ∀f,g,h. + os_le (ordered_set_OF_pre_riesz_space K V) f g → + os_le (ordered_set_OF_pre_riesz_space K V) + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with1 ? V)); + simplify; + apply og_ordered_abelian_group_properties*) + ] +qed. -record is_semi_distance (R:real) (C:Type) (semi_d: C→C→R) : Prop \def - { sd_positive: ∀x,y:C. 0 ≤ semi_d x y; - sd_properness: \forall x:C. semi_d x x = 0; - sd_triangle_inequality: ∀x,y,z:C. semi_d x z ≤ semi_d x y + semi_d z y - }. +coercion cic:/matita/integration_algebras/rs_ordered_abelian_group.con. -record is_distance (R:real) (C:Type) (d:C→C→R) : Prop \def - { d_semi_distance:> is_semi_distance ? ? d; - d_properness: ∀x,y:C. d x y = 0 → x=y +record is_riesz_space (K:ordered_field_ch0) (V:pre_riesz_space K) : Prop ≝ + { rs_compat_le_times: ∀a:K.∀f:V. 0≤a → 0≤f → 0≤a*f }. -definition induced_distance ≝ - λR:real.λV:vector_space R.λnorm:V→R. - λf,g:V.norm (f - g). - -theorem induced_distance_is_distance: - ∀R:real.∀V:vector_space R.∀norm:V→R. - is_norm ? ? norm → is_distance ? ? (induced_distance ? ? norm). - intros; - apply mk_is_distance; - [ apply mk_is_semi_distance; - [ unfold induced_distance; - intros; - apply sn_positive; - apply n_semi_norm; - assumption - | unfold induced_distance; - intros; - unfold minus; - rewrite < plus_comm; - rewrite > opp_inverse; - apply eq_semi_norm_zero_zero; - apply n_semi_norm; - assumption - | unfold induced_distance; - intros; - (* ??? *) - elim daemon - ] - | unfold induced_distance; - intros; - generalize in match (n_properness ? ? ? H ? H1); - intro; - (* facile *) - elim daemon - ]. -qed. +record riesz_space (K:ordered_field_ch0) : Type \def + { rs_pre_riesz_space:> pre_riesz_space K; + rs_riesz_space_properties: is_riesz_space ? rs_pre_riesz_space + }. -record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def - { (* abelian semigroup properties *) - l_comm_j: symmetric ? join; - l_associative_j: associative ? join; - l_comm_m: symmetric ? meet; - l_associative_m: associative ? meet; - (* other properties *) - l_adsorb_j_m: ∀f,g. join f (meet f g) = f; - l_adsorb_m_j: ∀f,g. meet f (join f g) = f +record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { positive: ∀u:V. 0≤u → 0≤T u; + linear1: ∀u,v:V. T (u+v) = T u + T v; + linear2: ∀u:V.∀k:K. T (k*u) = k*(T u) }. -record lattice (C:Type) : Type \def - { join: C → C → C; - meet: C → C → C; - l_lattice_properties: is_lattice ? join meet +record sequentially_order_continuous (K) (V:riesz_space K) (T:V→K) : Prop ≝ + { soc_incr: + ∀a:nat→V.∀l:V.is_increasing ? a → is_sup V a l → + is_increasing K (λn.T (a n)) ∧ tends_to ? (λn.T (a n)) (T l) }. -definition le \def λC:Type.λL:lattice C.λf,g. meet ? L f g = f. +definition absolute_value ≝ λK.λS:riesz_space K.λf:S.f ∨ -f. -interpretation "Lattice le" 'leq a b = - (cic:/matita/integration_algebras/le.con _ _ a b). +(**************** Normed Riesz spaces ****************************) -definition lt \def λC:Type.λL:lattice C.λf,g. le ? L f g ∧ f ≠ g. +definition is_riesz_norm ≝ + λR:real.λV:riesz_space R.λnorm:norm R V. + ∀f,g:V. absolute_value ? V f ≤ absolute_value ? V g → + n_function R V norm f ≤ n_function R V norm g. -interpretation "Lattice lt" 'lt a b = - (cic:/matita/integration_algebras/lt.con _ _ a b). +record riesz_norm (R:real) (V:riesz_space R) : Type ≝ + { rn_norm:> norm R V; + rn_riesz_norm_property: is_riesz_norm ? ? rn_norm + }. -definition carrier_of_lattice ≝ - λC:Type.λL:lattice C.C. +(*CSC: non fa la chiusura delle coercion verso funclass *) +definition rn_function ≝ + λR:real.λV:riesz_space R.λnorm:riesz_norm ? V. + n_function R V (rn_norm ? ? norm). -record is_riesz_space (K:ordered_field_ch0) (V:vector_space K) - (L:lattice (Type_OF_vector_space ? V)) -: Prop -\def - { rs_compat_le_plus: ∀f,g,h. le ? L f g → le ? L (f+h) (g+h); - rs_compat_le_times: ∀a:K.∀f. of_le ? 0 a → le ? L 0 f → le ? L 0 (a*f) - }. +coercion cic:/matita/integration_algebras/rn_function.con 1. -record riesz_space (K:ordered_field_ch0) : Type \def - { rs_vector_space:> vector_space K; - rs_lattice:> lattice rs_vector_space; - rs_riesz_space_properties: is_riesz_space ? rs_vector_space rs_lattice +(************************** L-SPACES *************************************) +(* +record is_l_space (R:real) (V:riesz_space R) (norm:riesz_norm ? V) : Prop ≝ + { ls_banach: is_complete ? V (induced_distance ? ? norm); + ls_linear: ∀f,g:V. le ? V 0 f → le ? V 0 g → norm (f+g) = norm f + norm g }. - -definition absolute_value \def λK.λS:riesz_space K.λf.join ? S f (-f). +*) +(******************** ARCHIMEDEAN RIESZ SPACES ***************************) record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop \def - { ars_archimedean: ∃u.∀n.∀a.∀p:n > O. - le ? S - (absolute_value ? S a) - ((inv ? (sum_field K n) (not_eq_sum_field_zero ? n p))* u) → + { ars_archimedean: ∃u:S.∀n.∀a.∀p:n > O. + absolute_value ? S a ≤ + (inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u → a = 0 }. @@ -161,13 +165,6 @@ record archimedean_riesz_space (K:ordered_field_ch0) : Type \def ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space }. -record is_integral (K) (R:archimedean_riesz_space K) (I:R→K) : Prop -\def - { i_positive: ∀f:R. le ? R 0 f → of_le K 0 (I f); - i_linear1: ∀f,g:R. I (f + g) = I f + I g; - i_linear2: ∀f:R.∀k:K. I (k*f) = k*(I f) - }. - definition is_weak_unit ≝ (* This definition is by Spitters. He cites Fremlin 353P, but: 1. that theorem holds only in f-algebras (as in Spitters, but we are @@ -178,7 +175,7 @@ definition is_weak_unit ≝ 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces only. We pick this definition for now. *) λR:real.λV:archimedean_riesz_space R.λe:V. - ∀v:V. lt ? V 0 v → lt ? V 0 (meet ? V v e). + ∀v:V. 0 zero_neutral; assumption - ]. + ].*) qed. -definition distance_induced_by_integral ≝ +definition induced_norm ≝ λR:real.λV:integration_riesz_space R. - induced_distance ? ? (induced_norm R V). + mk_norm ? ? (induced_norm_fun ? V) (induced_norm_is_norm ? V). -theorem distance_induced_by_integral_is_distance: +lemma is_riesz_norm_induced_norm: ∀R:real.∀V:integration_riesz_space R. - is_distance ? ? (distance_induced_by_integral ? V). + is_riesz_norm ? ? (induced_norm ? V). + intros; + unfold is_riesz_norm; intros; - unfold distance_induced_by_integral; - apply induced_distance_is_distance; - apply induced_norm_is_norm. + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon. qed. +definition induced_riesz_norm ≝ + λR:real.λV:integration_riesz_space R. + mk_riesz_norm ? ? (induced_norm ? V) (is_riesz_norm_induced_norm ? V). + +definition distance_induced_by_integral ≝ + λR:real.λV:integration_riesz_space R. + induced_distance ? ? (induced_norm R V). + +definition is_complete_integration_riesz_space ≝ + λR:real.λV:integration_riesz_space R. + is_complete ? ? (distance_induced_by_integral ? V). + +record complete_integration_riesz_space (R:real) : Type ≝ + { cirz_integration_riesz_space:> integration_riesz_space R; + cirz_complete_integration_riesz_space_property: + is_complete_integration_riesz_space ? cirz_integration_riesz_space + }. + +(* now we prove that any complete integration riesz space is an L-space *) + +(*theorem is_l_space_l_space_induced_by_integral: + ∀R:real.∀V:complete_integration_riesz_space R. + is_l_space ? ? (induced_riesz_norm ? V). + intros; + constructor 1; + [ apply cirz_complete_integration_riesz_space_property + | intros; + unfold induced_riesz_norm; + simplify; + unfold induced_norm; + simplify; + unfold induced_norm_fun; + (* difficile *) + elim daemon + ]. +qed.*) + +(**************************** f-ALGEBRAS ********************************) + record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ { (* ring properties *) @@ -265,45 +305,64 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) }. -record algebra (K: field) (V:vector_space K) (a_one:V) : Type \def - { a_mult: V → V → V; +record algebra (K: field) : Type \def + { a_vector_space:> vector_space K; + a_one: a_vector_space; + a_mult: a_vector_space → a_vector_space → a_vector_space; a_algebra_properties: is_algebra ? ? a_mult a_one }. interpretation "Algebra product" 'times a b = - (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). + (cic:/matita/integration_algebras/a_mult.con _ a b). definition ring_of_algebra ≝ - λK.λV:vector_space K.λone:V.λA:algebra ? V one. - mk_ring V (a_mult ? ? ? A) one - (a_ring ? ? ? ? (a_algebra_properties ? ? ? A)). + λK.λA:algebra K. + mk_ring A (a_mult ? A) (a_one ? A) + (a_ring ? ? ? ? (a_algebra_properties ? A)). coercion cic:/matita/integration_algebras/ring_of_algebra.con. -record is_f_algebra (K) (S:archimedean_riesz_space K) (one: S) - (A:algebra ? S one) : Prop -\def -{ compat_mult_le: - ∀f,g:S. - le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? ? A f g); +record pre_f_algebra (K:ordered_field_ch0) : Type ≝ + { fa_archimedean_riesz_space:> archimedean_riesz_space K; + fa_algebra_: algebra K; + fa_with: a_vector_space ? fa_algebra_ = rs_vector_space ? fa_archimedean_riesz_space + }. + +lemma fa_algebra: ∀K:ordered_field_ch0.pre_f_algebra K → algebra K. + intros (K A); + apply mk_algebra; + [ apply (rs_vector_space ? A) + | elim daemon + | elim daemon + | elim daemon + ] + qed. + +coercion cic:/matita/integration_algebras/fa_algebra.con. + +record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝ +{ compat_mult_le: ∀f,g:A.0 ≤ f → 0 ≤ g → 0 ≤ f*g; compat_mult_meet: - ∀f,g,h:S. - meet ? S f g = 0 → meet ? S (a_mult ? ? ? A h f) g = 0 + ∀f,g,h:A.(f ∧ g) = 0 → ((h*f) ∧ g) = 0 }. -record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) (one:R) : -Type \def -{ fa_algebra:> algebra ? R one; - fa_f_algebra_properties: is_f_algebra ? ? ? fa_algebra +record f_algebra (K:ordered_field_ch0) : Type ≝ +{ fa_pre_f_algebra:> pre_f_algebra K; + fa_f_algebra_properties: is_f_algebra ? fa_pre_f_algebra }. (* to be proved; see footnote 2 in the paper by Spitters *) axiom symmetric_a_mult: - ∀K,R,one.∀A:f_algebra K R one. symmetric ? (a_mult ? ? ? A). + ∀K.∀A:f_algebra K. symmetric ? (a_mult ? A). record integration_f_algebra (R:real) : Type \def { ifa_integration_riesz_space:> integration_riesz_space R; - ifa_f_algebra:> - f_algebra ? ifa_integration_riesz_space - (irs_unit ? ifa_integration_riesz_space) - }. \ No newline at end of file + ifa_f_algebra_: f_algebra R; + ifa_with: + fa_archimedean_riesz_space ? ifa_f_algebra_ = + irs_archimedean_riesz_space ? ifa_integration_riesz_space + }. + +axiom ifa_f_algebra: ∀R:real.integration_f_algebra R → f_algebra R. + +coercion cic:/matita/integration_algebras/ifa_f_algebra.con.