X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fordered_sets.ma;h=9cd9f58a93e0db8b538b2ca3e17b430bed66def2;hb=dfc523454502ccab6a154a32d1d9b4d941d9a6a0;hp=b8c6952c7912bcdf0a1439b23fc58ad08e174404;hpb=80ce2b7d10578bf19408c9d98dd287a5b9d9c982;p=helm.git diff --git a/matita/dama/ordered_sets.ma b/matita/dama/ordered_sets.ma index b8c6952c7..9cd9f58a9 100644 --- a/matita/dama/ordered_sets.ma +++ b/matita/dama/ordered_sets.ma @@ -14,383 +14,212 @@ set "baseuri" "cic:/matita/ordered_sets/". -include "higher_order_defs/relations.ma". -include "nat/plus.ma". -include "constructive_connectives.ma". -include "constructive_higher_order_relations.ma". - -record excedence : Type ≝ { - exc_carr:> Type; - exc_relation: exc_carr → exc_carr → Prop; - exc_coreflexive: coreflexive ? exc_relation; - exc_cotransitive: cotransitive ? exc_relation -}. - -interpretation "excedence" 'nleq a b = - (cic:/matita/ordered_sets/exc_relation.con _ a b). - -definition le ≝ λE:excedence.λa,b:E. ¬ (a ≰ b). - -interpretation "ordered sets less or equal than" 'leq a b = - (cic:/matita/ordered_sets/le.con _ a b). - -lemma le_reflexive: ∀E.reflexive ? (le E). -intros (E); unfold; cases E; simplify; intros (x); apply (H x); -qed. - -lemma le_transitive: ∀E.transitive ? (le E). -intros (E); unfold; cases E; simplify; unfold Not; intros (x y z Rxy Ryz H2); -cases (c x z y H2) (H4 H5); clear H2; [exact (Rxy H4)|exact (Ryz H5)] -qed. - -definition apart ≝ λE:excedence.λa,b:E. a ≰ b ∨ b ≰ a. - -notation "a # b" non associative with precedence 50 for @{ 'apart $a $b}. -interpretation "apartness" 'apart a b = (cic:/matita/ordered_sets/apart.con _ a b). - -lemma apart_coreflexive: ∀E.coreflexive ? (apart E). -intros (E); unfold; cases E; simplify; clear E; intros (x); unfold; -intros (H1); apply (H x); cases H1; assumption; -qed. - -lemma apart_symmetric: ∀E.symmetric ? (apart E). -intros (E); unfold; intros(x y H); cases H; clear H; [right|left] assumption; -qed. - -lemma apart_cotrans: ∀E. cotransitive ? (apart E). -intros (E); unfold; cases E (T f _ cTf); simplify; intros (x y z Axy); -cases Axy (H); lapply (cTf ? ? z H) as H1; cases H1; clear Axy H1; -[left; left|right; left|right; right|left; right] assumption. -qed. - -definition eq ≝ λE:excedence.λa,b:E. ¬ (a # b). - -notation "a ≈ b" non associative with precedence 50 for @{ 'napart $a $b}. -interpretation "alikeness" 'napart a b = - (cic:/matita/ordered_sets/eq.con _ a b). - -lemma eq_reflexive:∀E. reflexive ? (eq E). -intros (E); unfold; cases E (T f cRf _); simplify; unfold Not; intros (x H); -apply (cRf x); cases H; assumption; -qed. - -lemma eq_symmetric:∀E.symmetric ? (eq E). -intros (E); unfold; unfold eq; unfold Not; -intros (x y H1 H2); apply H1; cases H2; [right|left] assumption; -qed. - -lemma eq_transitive: ∀E.transitive ? (eq E). -intros (E); unfold; cases E (T f _ cTf); simplify; unfold Not; -intros (x y z H1 H2 H3); cases H3 (H4 H4); clear E H3; lapply (cTf ? ? y H4) as H5; -cases H5; clear H5 H4 cTf; [1,4: apply H1|*:apply H2] clear H1 H2; -[1,3:left|*:right] assumption; -qed. - -lemma le_antisymmetric: ∀E.antisymmetric ? (le E) (eq E). -intros (E); unfold; intros (x y Lxy Lyx); unfold; unfold; intros (H); -cases H; [apply Lxy;|apply Lyx] assumption; -qed. - -definition lt ≝ λE:excedence.λa,b:E. a ≤ b ∧ a # b. +include "excedence.ma". -interpretation "ordered sets less than" 'lt a b = - (cic:/matita/ordered_sets/lt.con _ a b). - -lemma lt_coreflexive: ∀E.coreflexive ? (lt E). -intros (E); unfold; unfold Not; intros (x H); cases H (_ ABS); -apply (apart_coreflexive ? x ABS); -qed. - -lemma lt_transitive: ∀E.transitive ? (lt E). -intros (E); unfold; intros (x y z H1 H2); cases H1 (Lxy Axy); cases H2 (Lyz Ayz); -split; [apply (le_transitive ???? Lxy Lyz)] clear H1 H2; -cases Axy (H1 H1); cases Ayz (H2 H2); [1:cases (Lxy H1)|3:cases (Lyz H2)] -clear Axy Ayz;lapply (exc_cotransitive E) as c; unfold cotransitive in c; -lapply (exc_coreflexive E) as r; unfold coreflexive in r; -[1: lapply (c ?? y H1) as H3; cases H3 (H4 H4); [cases (Lxy H4)|cases (r ? H4)] -|2: lapply (c ?? x H2) as H3; cases H3 (H4 H4); [right; assumption|cases (Lxy H4)]] -qed. - -theorem mah: ∀E:excedence.∀a,b:E. (a < b) → (b ≰ a). -intros (E a b Lab); cases Lab (LEab Aab); -cases Aab (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) -qed. - --- altro file -opposto TH è assioma per ordine totale. - --- - - - - - - - -record is_order_relation (C:Type) (le:C→C→Prop) (eq:C→C→Prop) : Type ≝ { - or_reflexive: reflexive ? le; - or_transitive: transitive ? le; - or_antisimmetric: antisymmetric ? le eq +record is_porder_relation (C:Type) (le:C→C→Prop) (eq:C→C→Prop) : Type ≝ { + por_reflexive: reflexive ? le; + por_transitive: transitive ? le; + por_antisimmetric: antisymmetric ? le eq }. -record ordered_set: Type ≝ { - os_carr:> excedence; - os_order_relation_properties:> is_order_relation ? (le os_carr) (apart os_carr) +record pordered_set: Type ≝ { + pos_carr:> excedence; + pos_order_relation_properties:> is_porder_relation ? (le pos_carr) (eq pos_carr) }. -ordered_set. - -E +lemma pordered_set_of_excedence: excedence → pordered_set. +intros (E); apply (mk_pordered_set E); apply (mk_is_porder_relation); +[apply le_reflexive|apply le_transitive|apply le_antisymmetric] +qed. -E +alias id "transitive" = "cic:/matita/higher_order_defs/relations/transitive.con". +alias id "cotransitive" = "cic:/matita/higher_order_defs/relations/cotransitive.con". +alias id "antisymmetric" = "cic:/matita/higher_order_defs/relations/antisymmetric.con". theorem antisimmetric_to_cotransitive_to_transitive: - ∀C.∀le:relation C. antisimmetric ? le → cotransitive ? le → - transitive ? le. - intros; - unfold transitive; - intros; - elim (c ? ? z H1); - [ assumption - | rewrite < (H ? ? H2 t); - assumption - ]. + ∀C:Type.∀le:C→C→Prop. antisymmetric ? le → cotransitive ? le → transitive ? le. +intros (T f Af cT); unfold transitive; intros (x y z fxy fyz); +lapply (cT ? ? fxy z) as H; cases H; [assumption] cases (Af ? ? fyz H1); qed. -definition is_increasing ≝ λO:ordered_set.λa:nat→O.∀n:nat.a n ≤ a (S n). -definition is_decreasing ≝ λO:ordered_set.λa:nat→O.∀n:nat.a (S n) ≤ a n. +definition is_increasing ≝ λO:pordered_set.λa:nat→O.∀n:nat.a n ≤ a (S n). +definition is_decreasing ≝ λO:pordered_set.λa:nat→O.∀n:nat.a (S n) ≤ a n. -definition is_upper_bound ≝ λO:ordered_set.λa:nat→O.λu:O.∀n:nat.a n ≤ u. -definition is_lower_bound ≝ λO:ordered_set.λa:nat→O.λu:O.∀n:nat.u ≤ a n. +definition is_upper_bound ≝ λO:pordered_set.λa:nat→O.λu:O.∀n:nat.a n ≤ u. +definition is_lower_bound ≝ λO:pordered_set.λa:nat→O.λu:O.∀n:nat.u ≤ a n. -record is_sup (O:ordered_set) (a:nat→O) (u:O) : Prop ≝ +record is_sup (O:pordered_set) (a:nat→O) (u:O) : Prop ≝ { sup_upper_bound: is_upper_bound O a u; sup_least_upper_bound: ∀v:O. is_upper_bound O a v → u≤v }. -record is_inf (O:ordered_set) (a:nat→O) (u:O) : Prop ≝ +record is_inf (O:pordered_set) (a:nat→O) (u:O) : Prop ≝ { inf_lower_bound: is_lower_bound O a u; inf_greatest_lower_bound: ∀v:O. is_lower_bound O a v → v≤u }. -record is_bounded_below (O:ordered_set) (a:nat→O) : Type ≝ +record is_bounded_below (O:pordered_set) (a:nat→O) : Type ≝ { ib_lower_bound: O; ib_lower_bound_is_lower_bound: is_lower_bound ? a ib_lower_bound }. -record is_bounded_above (O:ordered_set) (a:nat→O) : Type ≝ +record is_bounded_above (O:pordered_set) (a:nat→O) : Type ≝ { ib_upper_bound: O; ib_upper_bound_is_upper_bound: is_upper_bound ? a ib_upper_bound }. -record is_bounded (O:ordered_set) (a:nat→O) : Type ≝ +record is_bounded (O:pordered_set) (a:nat→O) : Type ≝ { ib_bounded_below:> is_bounded_below ? a; ib_bounded_above:> is_bounded_above ? a }. -record bounded_below_sequence (O:ordered_set) : Type ≝ +record bounded_below_sequence (O:pordered_set) : Type ≝ { bbs_seq:1> nat→O; bbs_is_bounded_below:> is_bounded_below ? bbs_seq }. -record bounded_above_sequence (O:ordered_set) : Type ≝ +record bounded_above_sequence (O:pordered_set) : Type ≝ { bas_seq:1> nat→O; bas_is_bounded_above:> is_bounded_above ? bas_seq }. -record bounded_sequence (O:ordered_set) : Type ≝ +record bounded_sequence (O:pordered_set) : Type ≝ { bs_seq:1> nat → O; bs_is_bounded_below: is_bounded_below ? bs_seq; bs_is_bounded_above: is_bounded_above ? bs_seq }. definition bounded_below_sequence_of_bounded_sequence ≝ - λO:ordered_set.λb:bounded_sequence O. + λO:pordered_set.λb:bounded_sequence O. mk_bounded_below_sequence ? b (bs_is_bounded_below ? b). coercion cic:/matita/ordered_sets/bounded_below_sequence_of_bounded_sequence.con. definition bounded_above_sequence_of_bounded_sequence ≝ - λO:ordered_set.λb:bounded_sequence O. + λO:pordered_set.λb:bounded_sequence O. mk_bounded_above_sequence ? b (bs_is_bounded_above ? b). coercion cic:/matita/ordered_sets/bounded_above_sequence_of_bounded_sequence.con. definition lower_bound ≝ - λO:ordered_set.λb:bounded_below_sequence O. + λO:pordered_set.λb:bounded_below_sequence O. ib_lower_bound ? b (bbs_is_bounded_below ? b). lemma lower_bound_is_lower_bound: - ∀O:ordered_set.∀b:bounded_below_sequence O. + ∀O:pordered_set.∀b:bounded_below_sequence O. is_lower_bound ? b (lower_bound ? b). - intros; - unfold lower_bound; - apply ib_lower_bound_is_lower_bound. +intros; unfold lower_bound; apply ib_lower_bound_is_lower_bound. qed. definition upper_bound ≝ - λO:ordered_set.λb:bounded_above_sequence O. + λO:pordered_set.λb:bounded_above_sequence O. ib_upper_bound ? b (bas_is_bounded_above ? b). lemma upper_bound_is_upper_bound: - ∀O:ordered_set.∀b:bounded_above_sequence O. + ∀O:pordered_set.∀b:bounded_above_sequence O. is_upper_bound ? b (upper_bound ? b). - intros; - unfold upper_bound; - apply ib_upper_bound_is_upper_bound. +intros; unfold upper_bound; apply ib_upper_bound_is_upper_bound. qed. -definition lt ≝ λO:ordered_set.λa,b:O.a ≤ b ∧ a ≠ b. - -interpretation "Ordered set lt" 'lt a b = - (cic:/matita/ordered_sets/lt.con _ a b). - -definition reverse_ordered_set: ordered_set → ordered_set. - intros; - apply mk_ordered_set; - [2:apply (λx,y:o.y ≤ x) - | skip - | apply mk_is_order_relation; - [ simplify; - intros; - apply (or_reflexive ? ? o) - | simplify; - intros; - apply (or_transitive ? ? o); - [2: apply H1 - | skip - | assumption - ] - | simplify; - intros; - apply (or_antisimmetric ? ? o); - assumption - ] - ]. +lemma Or_symmetric: symmetric ? Or. +unfold; intros (x y H); cases H; [right|left] assumption; qed. - -interpretation "Ordered set ge" 'geq a b = - (cic:/matita/ordered_sets/os_le.con _ - (cic:/matita/ordered_sets/os_pre_ordered_set.con _ - (cic:/matita/ordered_sets/reverse_ordered_set.con _ _)) a b). +definition reverse_excedence: excedence → excedence. +intros (E); apply (mk_excedence E); [apply (λx,y.exc_relation E y x)] +cases E (T f cRf cTf); simplify; +[1: unfold Not; intros (x H); apply (cRf x); assumption +|2: intros (x y z); apply Or_symmetric; apply cTf; assumption;] +qed. + +(* + +definition reverse_pordered_set: pordered_set → pordered_set. +intros (p); apply (mk_pordered_set (reverse_excedence p)); +generalize in match (reverse_excedence p); intros (E); cases E (T f cRf cTf); +simplify; apply mk_is_porder_relation; unfold; intros; +[apply le_reflexive|apply (le_transitive ???? H H1);|apply (le_antisymmetric ??? H H1)] +qed. + lemma is_lower_bound_reverse_is_upper_bound: - ∀O:ordered_set.∀a:nat→O.∀l:O. - is_lower_bound O a l → is_upper_bound (reverse_ordered_set O) a l. - intros; - unfold; - intro; - unfold; - unfold reverse_ordered_set; - simplify; - apply H. + ∀O:pordered_set.∀a:nat→O.∀l:O. + is_lower_bound O a l → is_upper_bound (reverse_pordered_set O) a l. +intros (O a l H); unfold; intros (n); unfold reverse_pordered_set; +unfold reverse_excedence; simplify; fold unfold le (le ? l (a n)); apply H; qed. lemma is_upper_bound_reverse_is_lower_bound: - ∀O:ordered_set.∀a:nat→O.∀l:O. - is_upper_bound O a l → is_lower_bound (reverse_ordered_set O) a l. - intros; - unfold; - intro; - unfold; - unfold reverse_ordered_set; - simplify; - apply H. + ∀O:pordered_set.∀a:nat→O.∀l:O. + is_upper_bound O a l → is_lower_bound (reverse_pordered_set O) a l. +intros (O a l H); unfold; intros (n); unfold reverse_pordered_set; +unfold reverse_excedence; simplify; fold unfold le (le ? (a n) l); apply H; qed. lemma reverse_is_lower_bound_is_upper_bound: - ∀O:ordered_set.∀a:nat→O.∀l:O. - is_lower_bound (reverse_ordered_set O) a l → is_upper_bound O a l. - intros; - unfold in H; - unfold reverse_ordered_set in H; - apply H. + ∀O:pordered_set.∀a:nat→O.∀l:O. + is_lower_bound (reverse_pordered_set O) a l → is_upper_bound O a l. +intros (O a l H); unfold; intros (n); unfold reverse_pordered_set in H; +unfold reverse_excedence in H; simplify in H; apply H; qed. lemma reverse_is_upper_bound_is_lower_bound: - ∀O:ordered_set.∀a:nat→O.∀l:O. - is_upper_bound (reverse_ordered_set O) a l → is_lower_bound O a l. - intros; - unfold in H; - unfold reverse_ordered_set in H; - apply H. + ∀O:pordered_set.∀a:nat→O.∀l:O. + is_upper_bound (reverse_pordered_set O) a l → is_lower_bound O a l. +intros (O a l H); unfold; intros (n); unfold reverse_pordered_set in H; +unfold reverse_excedence in H; simplify in H; apply H; qed. - lemma is_inf_to_reverse_is_sup: - ∀O:ordered_set.∀a:bounded_below_sequence O.∀l:O. - is_inf O a l → is_sup (reverse_ordered_set O) a l. - intros; - apply (mk_is_sup (reverse_ordered_set O)); - [ apply is_lower_bound_reverse_is_upper_bound; - apply inf_lower_bound; - assumption - | intros; - change in v with (os_carrier O); - change with (v ≤ l); - apply (inf_greatest_lower_bound ? ? ? H); - apply reverse_is_upper_bound_is_lower_bound; - assumption - ]. + ∀O:pordered_set.∀a:bounded_below_sequence O.∀l:O. + is_inf O a l → is_sup (reverse_pordered_set O) a l. +intros (O a l H); apply (mk_is_sup (reverse_pordered_set O)); +[1: apply is_lower_bound_reverse_is_upper_bound; apply inf_lower_bound; assumption +|2: unfold reverse_pordered_set; simplify; unfold reverse_excedence; simplify; + intros (m H1); apply (inf_greatest_lower_bound ? ? ? H); apply H1;] qed. - + lemma is_sup_to_reverse_is_inf: - ∀O:ordered_set.∀a:bounded_above_sequence O.∀l:O. - is_sup O a l → is_inf (reverse_ordered_set O) a l. - intros; - apply (mk_is_inf (reverse_ordered_set O)); - [ apply is_upper_bound_reverse_is_lower_bound; - apply sup_upper_bound; - assumption - | intros; - change in v with (os_carrier O); - change with (l ≤ v); - apply (sup_least_upper_bound ? ? ? H); - apply reverse_is_lower_bound_is_upper_bound; - assumption - ]. + ∀O:pordered_set.∀a:bounded_above_sequence O.∀l:O. + is_sup O a l → is_inf (reverse_pordered_set O) a l. +intros (O a l H); apply (mk_is_inf (reverse_pordered_set O)); +[1: apply is_upper_bound_reverse_is_lower_bound; apply sup_upper_bound; assumption +|2: unfold reverse_pordered_set; simplify; unfold reverse_excedence; simplify; + intros (m H1); apply (sup_least_upper_bound ? ? ? H); apply H1;] qed. lemma reverse_is_sup_to_is_inf: - ∀O:ordered_set.∀a:bounded_above_sequence O.∀l:O. - is_sup (reverse_ordered_set O) a l → is_inf O a l. - intros; - apply mk_is_inf; - [ apply reverse_is_upper_bound_is_lower_bound; - change in l with (os_carrier (reverse_ordered_set O)); - apply sup_upper_bound; - assumption - | intros; - change in l with (os_carrier (reverse_ordered_set O)); - change in v with (os_carrier (reverse_ordered_set O)); - change with (os_le (reverse_ordered_set O) l v); - apply (sup_least_upper_bound ? ? ? H); - change in v with (os_carrier O); - apply is_lower_bound_reverse_is_upper_bound; - assumption - ]. + ∀O:pordered_set.∀a:bounded_above_sequence O.∀l:O. + is_sup (reverse_pordered_set O) a l → is_inf O a l. +intros (O a l H); apply mk_is_inf; +[1: apply reverse_is_upper_bound_is_lower_bound; + apply (sup_upper_bound (reverse_pordered_set O)); assumption +|2: intros (v H1); apply (sup_least_upper_bound (reverse_pordered_set O) a l H v); + apply is_lower_bound_reverse_is_upper_bound; assumption;] qed. lemma reverse_is_inf_to_is_sup: - ∀O:ordered_set.∀a:bounded_above_sequence O.∀l:O. - is_inf (reverse_ordered_set O) a l → is_sup O a l. - intros; - apply mk_is_sup; - [ apply reverse_is_lower_bound_is_upper_bound; - change in l with (os_carrier (reverse_ordered_set O)); - apply (inf_lower_bound ? ? ? H) - | intros; - change in l with (os_carrier (reverse_ordered_set O)); - change in v with (os_carrier (reverse_ordered_set O)); - change with (os_le (reverse_ordered_set O) v l); - apply (inf_greatest_lower_bound ? ? ? H); - change in v with (os_carrier O); - apply is_upper_bound_reverse_is_lower_bound; - assumption - ]. + ∀O:pordered_set.∀a:bounded_above_sequence O.∀l:O. + is_inf (reverse_pordered_set O) a l → is_sup O a l. +intros (O a l H); apply mk_is_sup; +[1: apply reverse_is_lower_bound_is_upper_bound; + apply (inf_lower_bound (reverse_pordered_set O)); assumption +|2: intros (v H1); apply (inf_greatest_lower_bound (reverse_pordered_set O) a l H v); + apply is_upper_bound_reverse_is_lower_bound; assumption;] qed. +(* record cotransitively_ordered_set: Type := { cos_ordered_set :> ordered_set; cos_cotransitive: cotransitive ? (os_le cos_ordered_set) }. +*) + +*) + +definition total_order_property : ∀E:excedence. Type ≝ + λE:excedence. ∀a,b:E. a ≰ b → a < b. + +record tordered_set : Type ≝ { + tos_poset:> pordered_set; + tos_totality: total_order_property tos_poset +}.