X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Fordered_sets.ma;h=fe16db53ff0c2913e8d19c09cf3986f571973587;hb=5a8b5510d0b2d6dd1086658f97ce4f2186eced22;hp=27b10aeefbac510bfc7d65a7d4ae70873a6483a0;hpb=b098ae0cb12a818332cb3241ccaf76f99c4221a5;p=helm.git diff --git a/matita/dama/ordered_sets.ma b/matita/dama/ordered_sets.ma index 27b10aeef..fe16db53f 100644 --- a/matita/dama/ordered_sets.ma +++ b/matita/dama/ordered_sets.ma @@ -17,679 +17,101 @@ set "baseuri" "cic:/matita/ordered_sets/". include "higher_order_defs/relations.ma". include "nat/plus.ma". include "constructive_connectives.ma". +include "constructive_higher_order_relations.ma". -definition cotransitive ≝ - λC:Type.λle:C→C→Prop.∀x,y,z:C. le x y → le x z ∨ le z y. +record excedence : Type ≝ { + exc_carr:> Type; + exc_relation: exc_carr → exc_carr → Prop; + exc_coreflexive: coreflexive ? exc_relation; + exc_cotransitive: cotransitive ? exc_relation +}. -definition antisimmetric ≝ - λC:Type.λle:C→C→Prop.∀x,y:C. le x y → le y x → x=y. +interpretation "excedence" 'nleq a b = + (cic:/matita/ordered_sets/exc_relation.con _ a b). -record is_order_relation (C:Type) (le:C→C→Prop) : Type ≝ - { or_reflexive: reflexive ? le; - or_transitive: transitive ? le; - or_antisimmetric: antisimmetric ? le - }. +definition le ≝ λE:excedence.λa,b:E. ¬ (a ≰ b). -record ordered_set: Type ≝ - { os_carrier:> Type; - os_le: os_carrier → os_carrier → Prop; - os_order_relation_properties:> is_order_relation ? os_le - }. +interpretation "ordered sets less or equal than" 'leq a b = + (cic:/matita/ordered_sets/le.con _ a b). -interpretation "Ordered Sets le" 'leq a b = - (cic:/matita/ordered_sets/os_le.con _ a b). - -theorem antisimmetric_to_cotransitive_to_transitive: - ∀C.∀le:relation C. antisimmetric ? le → cotransitive ? le → - transitive ? le. - intros; - unfold transitive; - intros; - elim (c ? ? z H1); - [ assumption - | rewrite < (H ? ? H2 t); - assumption - ]. -qed. - -definition is_increasing ≝ λO:ordered_set.λa:nat→O.∀n:nat.a n ≤ a (S n). -definition is_decreasing ≝ λO:ordered_set.λa:nat→O.∀n:nat.a (S n) ≤ a n. - -definition is_upper_bound ≝ λO:ordered_set.λa:nat→O.λu:O.∀n:nat.a n ≤ u. -definition is_lower_bound ≝ λO:ordered_set.λa:nat→O.λu:O.∀n:nat.u ≤ a n. - -record is_sup (O:ordered_set) (a:nat→O) (u:O) : Prop ≝ - { sup_upper_bound: is_upper_bound O a u; - sup_least_upper_bound: ∀v:O. is_upper_bound O a v → u≤v - }. - -record is_inf (O:ordered_set) (a:nat→O) (u:O) : Prop ≝ - { inf_lower_bound: is_lower_bound O a u; - inf_greatest_lower_bound: ∀v:O. is_lower_bound O a v → v≤u - }. - -record is_bounded_below (O:ordered_set) (a:nat→O) : Type ≝ - { ib_lower_bound: O; - ib_lower_bound_is_lower_bound: is_lower_bound ? a ib_lower_bound - }. - -record is_bounded_above (O:ordered_set) (a:nat→O) : Type ≝ - { ib_upper_bound: O; - ib_upper_bound_is_upper_bound: is_upper_bound ? a ib_upper_bound - }. - -record is_bounded (O:ordered_set) (a:nat→O) : Type ≝ - { ib_bounded_below:> is_bounded_below ? a; - ib_bounded_above:> is_bounded_above ? a - }. - -record bounded_below_sequence (O:ordered_set) : Type ≝ - { bbs_seq:1> nat→O; - bbs_is_bounded_below:> is_bounded_below ? bbs_seq - }. - -record bounded_above_sequence (O:ordered_set) : Type ≝ - { bas_seq:1> nat→O; - bas_is_bounded_above:> is_bounded_above ? bas_seq - }. - -record bounded_sequence (O:ordered_set) : Type ≝ - { bs_seq:1> nat → O; - bs_is_bounded_below: is_bounded_below ? bs_seq; - bs_is_bounded_above: is_bounded_above ? bs_seq - }. - -definition bounded_below_sequence_of_bounded_sequence ≝ - λO:ordered_set.λb:bounded_sequence O. - mk_bounded_below_sequence ? b (bs_is_bounded_below ? b). - -coercion cic:/matita/ordered_sets/bounded_below_sequence_of_bounded_sequence.con. - -definition bounded_above_sequence_of_bounded_sequence ≝ - λO:ordered_set.λb:bounded_sequence O. - mk_bounded_above_sequence ? b (bs_is_bounded_above ? b). - -coercion cic:/matita/ordered_sets/bounded_above_sequence_of_bounded_sequence.con. - -definition lower_bound ≝ - λO:ordered_set.λb:bounded_below_sequence O. - ib_lower_bound ? b (bbs_is_bounded_below ? b). - -lemma lower_bound_is_lower_bound: - ∀O:ordered_set.∀b:bounded_below_sequence O. - is_lower_bound ? b (lower_bound ? b). - intros; - unfold lower_bound; - apply ib_lower_bound_is_lower_bound. -qed. - -definition upper_bound ≝ - λO:ordered_set.λb:bounded_above_sequence O. - ib_upper_bound ? b (bas_is_bounded_above ? b). - -lemma upper_bound_is_upper_bound: - ∀O:ordered_set.∀b:bounded_above_sequence O. - is_upper_bound ? b (upper_bound ? b). - intros; - unfold upper_bound; - apply ib_upper_bound_is_upper_bound. -qed. - -record is_dedekind_sigma_complete (O:ordered_set) : Type ≝ - { dsc_inf: ∀a:nat→O.∀m:O. is_lower_bound ? a m → ex ? (λs:O.is_inf O a s); - dsc_inf_proof_irrelevant: - ∀a:nat→O.∀m,m':O.∀p:is_lower_bound ? a m.∀p':is_lower_bound ? a m'. - (match dsc_inf a m p with [ ex_intro s _ ⇒ s ]) = - (match dsc_inf a m' p' with [ ex_intro s' _ ⇒ s' ]); - dsc_sup: ∀a:nat→O.∀m:O. is_upper_bound ? a m → ex ? (λs:O.is_sup O a s); - dsc_sup_proof_irrelevant: - ∀a:nat→O.∀m,m':O.∀p:is_upper_bound ? a m.∀p':is_upper_bound ? a m'. - (match dsc_sup a m p with [ ex_intro s _ ⇒ s ]) = - (match dsc_sup a m' p' with [ ex_intro s' _ ⇒ s' ]) - }. - -record dedekind_sigma_complete_ordered_set : Type ≝ - { dscos_ordered_set:> ordered_set; - dscos_dedekind_sigma_complete_properties:> - is_dedekind_sigma_complete dscos_ordered_set - }. - -definition inf: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_below_sequence O → O. - intros; - elim - (dsc_inf O (dscos_dedekind_sigma_complete_properties O) b); - [ apply a - | apply (lower_bound ? b) - | apply lower_bound_is_lower_bound - ] -qed. - -lemma inf_is_inf: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_below_sequence O. - is_inf ? a (inf ? a). - intros; - unfold inf; - simplify; - elim (dsc_inf O (dscos_dedekind_sigma_complete_properties O) a -(lower_bound O a) (lower_bound_is_lower_bound O a)); - simplify; - assumption. -qed. - -lemma inf_proof_irrelevant: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a,a':bounded_below_sequence O. - bbs_seq ? a = bbs_seq ? a' → - inf ? a = inf ? a'. - intros 3; - elim a 0; - elim a'; - simplify in H; - generalize in match i1; - clear i1; - rewrite > H; - intro; - simplify; - rewrite < (dsc_inf_proof_irrelevant O O f (ib_lower_bound ? f i) - (ib_lower_bound ? f i2) (ib_lower_bound_is_lower_bound ? f i) - (ib_lower_bound_is_lower_bound ? f i2)); - reflexivity. -qed. - -definition sup: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_above_sequence O → O. - intros; - elim - (dsc_sup O (dscos_dedekind_sigma_complete_properties O) b); - [ apply a - | apply (upper_bound ? b) - | apply upper_bound_is_upper_bound - ]. -qed. - -lemma sup_is_sup: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_above_sequence O. - is_sup ? a (sup ? a). - intros; - unfold sup; - simplify; - elim (dsc_sup O (dscos_dedekind_sigma_complete_properties O) a -(upper_bound O a) (upper_bound_is_upper_bound O a)); - simplify; - assumption. -qed. - -lemma sup_proof_irrelevant: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a,a':bounded_above_sequence O. - bas_seq ? a = bas_seq ? a' → - sup ? a = sup ? a'. - intros 3; - elim a 0; - elim a'; - simplify in H; - generalize in match i1; - clear i1; - rewrite > H; - intro; - simplify; - rewrite < (dsc_sup_proof_irrelevant O O f (ib_upper_bound ? f i2) - (ib_upper_bound ? f i) (ib_upper_bound_is_upper_bound ? f i2) - (ib_upper_bound_is_upper_bound ? f i)); - reflexivity. -qed. - -axiom daemon: False. - -theorem inf_le_sup: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_sequence O. inf ? a ≤ sup ? a. - intros (O'); - apply (or_transitive ? ? O' ? (a O)); - [ elim daemon (*apply (inf_lower_bound ? ? ? ? (inf_is_inf ? ? a))*) - | elim daemon (*apply (sup_upper_bound ? ? ? ? (sup_is_sup ? ? a))*) - ]. -qed. - -lemma inf_respects_le: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_below_sequence O.∀m:O. - is_upper_bound ? a m → inf ? a ≤ m. - intros (O'); - apply (or_transitive ? ? O' ? (sup ? (mk_bounded_sequence ? a ? ?))); - [ apply (bbs_is_bounded_below ? a) - | apply (mk_is_bounded_above ? ? m H) - | apply inf_le_sup - | apply - (sup_least_upper_bound ? ? ? - (sup_is_sup ? (mk_bounded_sequence O' a a - (mk_is_bounded_above O' a m H)))); - assumption - ]. -qed. - -definition is_sequentially_monotone ≝ - λO:ordered_set.λf:O→O. - ∀a:nat→O.∀p:is_increasing ? a. - is_increasing ? (λi.f (a i)). - -record is_order_continuous - (O:dedekind_sigma_complete_ordered_set) (f:O→O) : Prop -≝ - { ioc_is_sequentially_monotone: is_sequentially_monotone ? f; - ioc_is_upper_bound_f_sup: - ∀a:bounded_above_sequence O. - is_upper_bound ? (λi.f (a i)) (f (sup ? a)); - ioc_respects_sup: - ∀a:bounded_above_sequence O. - is_increasing ? a → - f (sup ? a) = - sup ? (mk_bounded_above_sequence ? (λi.f (a i)) - (mk_is_bounded_above ? ? (f (sup ? a)) - (ioc_is_upper_bound_f_sup a))); - ioc_is_lower_bound_f_inf: - ∀a:bounded_below_sequence O. - is_lower_bound ? (λi.f (a i)) (f (inf ? a)); - ioc_respects_inf: - ∀a:bounded_below_sequence O. - is_decreasing ? a → - f (inf ? a) = - inf ? (mk_bounded_below_sequence ? (λi.f (a i)) - (mk_is_bounded_below ? ? (f (inf ? a)) - (ioc_is_lower_bound_f_inf a))) - }. - -theorem tail_inf_increasing: - ∀O:dedekind_sigma_complete_ordered_set. - ∀a:bounded_below_sequence O. - let y ≝ λi.mk_bounded_below_sequence ? (λj.a (i+j)) ? in - let x ≝ λi.inf ? (y i) in - is_increasing ? x. - [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? a a)); - simplify; - intro; - apply (ib_lower_bound_is_lower_bound ? a a) - | intros; - unfold is_increasing; - intro; - unfold x in ⊢ (? ? ? %); - apply (inf_greatest_lower_bound ? ? ? (inf_is_inf ? (y (S n)))); - change with (is_lower_bound ? (y (S n)) (inf ? (y n))); - unfold is_lower_bound; - intro; - generalize in match (inf_lower_bound ? ? ? (inf_is_inf ? (y n)) (S n1)); - (*CSC: coercion per FunClass inserita a mano*) - suppose (inf ? (y n) ≤ bbs_seq ? (y n) (S n1)) (H); - cut (bbs_seq ? (y n) (S n1) = bbs_seq ? (y (S n)) n1); - [ rewrite < Hcut; - assumption - | unfold y; - simplify; - auto paramodulation library - ] - ]. +lemma le_reflexive: ∀E.reflexive ? (le E). +intros (E); unfold; cases E; simplify; intros (x); apply (H x); qed. -definition is_liminf: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_below_sequence O → O → Prop. - intros; - apply - (is_sup ? (λi.inf ? (mk_bounded_below_sequence ? (λj.b (i+j)) ?)) t); - apply (mk_is_bounded_below ? ? (ib_lower_bound ? b b)); - simplify; - intros; - apply (ib_lower_bound_is_lower_bound ? b b). -qed. - -definition liminf: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_sequence O → O. - intros; - apply - (sup ? - (mk_bounded_above_sequence ? - (λi.inf ? - (mk_bounded_below_sequence ? - (λj.b (i+j)) ?)) ?)); - [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? b b)); - simplify; - intros; - apply (ib_lower_bound_is_lower_bound ? b b) - | apply (mk_is_bounded_above ? ? (ib_upper_bound ? b b)); - unfold is_upper_bound; - intro; - change with - (inf O - (mk_bounded_below_sequence O (\lambda j:nat.b (n+j)) - (mk_is_bounded_below O (\lambda j:nat.b (n+j)) (ib_lower_bound O b b) - (\lambda j:nat.ib_lower_bound_is_lower_bound O b b (n+j)))) -\leq ib_upper_bound O b b); - apply (inf_respects_le O); - simplify; - intro; - apply (ib_upper_bound_is_upper_bound ? b b) - ]. +lemma le_transitive: ∀E.transitive ? (le E). +intros (E); unfold; cases E; simplify; unfold Not; intros (x y z Rxy Ryz H2); +cases (c x z y H2) (H4 H5); clear H2; [exact (Rxy H4)|exact (Ryz H5)] qed. -definition reverse_ordered_set: ordered_set → ordered_set. - intros; - apply mk_ordered_set; - [2:apply (λx,y:o.y ≤ x) - | skip - | apply mk_is_order_relation; - [ simplify; - intros; - apply (or_reflexive ? ? o) - | simplify; - intros; - apply (or_transitive ? ? o); - [2: apply H1 - | skip - | assumption - ] - | simplify; - intros; - apply (or_antisimmetric ? ? o); - assumption - ] - ]. -qed. - -interpretation "Ordered set ge" 'geq a b = - (cic:/matita/ordered_sets/os_le.con _ - (cic:/matita/ordered_sets/os_pre_ordered_set.con _ - (cic:/matita/ordered_sets/reverse_ordered_set.con _ _)) a b). +definition apart ≝ λE:excedence.λa,b:E. a ≰ b ∨ b ≰ a. -lemma is_lower_bound_reverse_is_upper_bound: - ∀O:ordered_set.∀a:nat→O.∀l:O. - is_lower_bound O a l → is_upper_bound (reverse_ordered_set O) a l. - intros; - unfold; - intro; - unfold; - unfold reverse_ordered_set; - simplify; - apply H. -qed. +notation "a # b" non associative with precedence 50 for @{ 'apart $a $b}. +interpretation "apartness" 'apart a b = (cic:/matita/ordered_sets/apart.con _ a b). -lemma is_upper_bound_reverse_is_lower_bound: - ∀O:ordered_set.∀a:nat→O.∀l:O. - is_upper_bound O a l → is_lower_bound (reverse_ordered_set O) a l. - intros; - unfold; - intro; - unfold; - unfold reverse_ordered_set; - simplify; - apply H. +lemma apart_coreflexive: ∀E.coreflexive ? (apart E). +intros (E); unfold; cases E; simplify; clear E; intros (x); unfold; +intros (H1); apply (H x); cases H1; assumption; qed. -lemma reverse_is_lower_bound_is_upper_bound: - ∀O:ordered_set.∀a:nat→O.∀l:O. - is_lower_bound (reverse_ordered_set O) a l → is_upper_bound O a l. - intros; - unfold in H; - unfold reverse_ordered_set in H; - apply H. +lemma apart_symmetric: ∀E.symmetric ? (apart E). +intros (E); unfold; intros(x y H); cases H; clear H; [right|left] assumption; qed. -lemma reverse_is_upper_bound_is_lower_bound: - ∀O:ordered_set.∀a:nat→O.∀l:O. - is_upper_bound (reverse_ordered_set O) a l → is_lower_bound O a l. - intros; - unfold in H; - unfold reverse_ordered_set in H; - apply H. +lemma apart_cotrans: ∀E. cotransitive ? (apart E). +intros (E); unfold; cases E (T f _ cTf); simplify; intros (x y z Axy); +cases Axy (H); lapply (cTf ? ? z H) as H1; cases H1; clear Axy H1; +[left; left|right; left|right; right|left; right] assumption. qed. +definition eq ≝ λE:excedence.λa,b:E. ¬ (a # b). -lemma is_inf_to_reverse_is_sup: - ∀O:ordered_set.∀a:bounded_below_sequence O.∀l:O. - is_inf O a l → is_sup (reverse_ordered_set O) a l. - intros; - apply (mk_is_sup (reverse_ordered_set O)); - [ apply is_lower_bound_reverse_is_upper_bound; - apply inf_lower_bound; - assumption - | intros; - change in v with (os_carrier O); - change with (v ≤ l); - apply (inf_greatest_lower_bound ? ? ? H); - apply reverse_is_upper_bound_is_lower_bound; - assumption - ]. -qed. - -lemma is_sup_to_reverse_is_inf: - ∀O:ordered_set.∀a:bounded_above_sequence O.∀l:O. - is_sup O a l → is_inf (reverse_ordered_set O) a l. - intros; - apply (mk_is_inf (reverse_ordered_set O)); - [ apply is_upper_bound_reverse_is_lower_bound; - apply sup_upper_bound; - assumption - | intros; - change in v with (os_carrier O); - change with (l ≤ v); - apply (sup_least_upper_bound ? ? ? H); - apply reverse_is_lower_bound_is_upper_bound; - assumption - ]. -qed. +notation "a ≈ b" non associative with precedence 50 for @{ 'napart $a $b}. +interpretation "alikeness" 'napart a b = + (cic:/matita/ordered_sets/eq.con _ a b). -lemma reverse_is_sup_to_is_inf: - ∀O:ordered_set.∀a:bounded_above_sequence O.∀l:O. - is_sup (reverse_ordered_set O) a l → is_inf O a l. - intros; - apply mk_is_inf; - [ apply reverse_is_upper_bound_is_lower_bound; - change in l with (os_carrier (reverse_ordered_set O)); - apply sup_upper_bound; - assumption - | intros; - change in l with (os_carrier (reverse_ordered_set O)); - change in v with (os_carrier (reverse_ordered_set O)); - change with (os_le (reverse_ordered_set O) l v); - apply (sup_least_upper_bound ? ? ? H); - change in v with (os_carrier O); - apply is_lower_bound_reverse_is_upper_bound; - assumption - ]. +lemma eq_reflexive:∀E. reflexive ? (eq E). +intros (E); unfold; cases E (T f cRf _); simplify; unfold Not; intros (x H); +apply (cRf x); cases H; assumption; qed. -lemma reverse_is_inf_to_is_sup: - ∀O:ordered_set.∀a:bounded_above_sequence O.∀l:O. - is_inf (reverse_ordered_set O) a l → is_sup O a l. - intros; - apply mk_is_sup; - [ apply reverse_is_lower_bound_is_upper_bound; - change in l with (os_carrier (reverse_ordered_set O)); - apply (inf_lower_bound ? ? ? H) - | intros; - change in l with (os_carrier (reverse_ordered_set O)); - change in v with (os_carrier (reverse_ordered_set O)); - change with (os_le (reverse_ordered_set O) v l); - apply (inf_greatest_lower_bound ? ? ? H); - change in v with (os_carrier O); - apply is_upper_bound_reverse_is_lower_bound; - assumption - ]. +lemma eq_symmetric:∀E.symmetric ? (eq E). +intros (E); unfold; unfold eq; unfold Not; +intros (x y H1 H2); apply H1; cases H2; [right|left] assumption; qed. - -definition reverse_dedekind_sigma_complete_ordered_set: - dedekind_sigma_complete_ordered_set → dedekind_sigma_complete_ordered_set. - intros; - apply mk_dedekind_sigma_complete_ordered_set; - [ apply (reverse_ordered_set d) - | elim daemon - (*apply mk_is_dedekind_sigma_complete; - [ intros; - elim (dsc_sup ? ? d a m) 0; - [ generalize in match H; clear H; - generalize in match m; clear m; - elim d; - simplify in a1; - simplify; - change in a1 with (Type_OF_ordered_set ? (reverse_ordered_set ? o)); - apply (ex_intro ? ? a1); - simplify in H1; - change in m with (Type_OF_ordered_set ? o); - apply (is_sup_to_reverse_is_inf ? ? ? ? H1) - | generalize in match H; clear H; - generalize in match m; clear m; - elim d; - simplify; - change in t with (Type_OF_ordered_set ? o); - simplify in t; - apply reverse_is_lower_bound_is_upper_bound; - assumption - ] - | apply is_sup_reverse_is_inf; - | apply m - | - ]*) - ]. +lemma eq_transitive: ∀E.transitive ? (eq E). +intros (E); unfold; cases E (T f _ cTf); simplify; unfold Not; +intros (x y z H1 H2 H3); cases H3 (H4 H4); clear E H3; lapply (cTf ? ? y H4) as H5; +cases H5; clear H5 H4 cTf; [1,4: apply H1|*:apply H2] clear H1 H2; +[1,3:left|*:right] assumption; qed. -definition reverse_bounded_sequence: - ∀O:dedekind_sigma_complete_ordered_set. - bounded_sequence O → - bounded_sequence (reverse_dedekind_sigma_complete_ordered_set O). - intros; - apply mk_bounded_sequence; - [ apply bs_seq; - unfold reverse_dedekind_sigma_complete_ordered_set; - simplify; - elim daemon - | elim daemon - | elim daemon - ]. +lemma le_antisymmetric: ∀E.antisymmetric ? (le E) (eq E). +intros (E); unfold; intros (x y Lxy Lyx); unfold; unfold; intros (H); +cases H; [apply Lxy;|apply Lyx] assumption; qed. -definition limsup ≝ - λO:dedekind_sigma_complete_ordered_set. - λa:bounded_sequence O. - liminf (reverse_dedekind_sigma_complete_ordered_set O) - (reverse_bounded_sequence O a). +definition lt ≝ λE:excedence.λa,b:E. a ≤ b ∧ a # b. -notation "hvbox(〈a〉)" - non associative with precedence 45 -for @{ 'hide_everything_but $a }. +interpretation "ordered sets less than" 'lt a b = + (cic:/matita/ordered_sets/lt.con _ a b). -interpretation "mk_bounded_above_sequence" 'hide_everything_but a -= (cic:/matita/ordered_sets/bounded_above_sequence.ind#xpointer(1/1/1) _ _ a _). - -interpretation "mk_bounded_below_sequence" 'hide_everything_but a -= (cic:/matita/ordered_sets/bounded_below_sequence.ind#xpointer(1/1/1) _ _ a _). - -theorem eq_f_sup_sup_f: - ∀O':dedekind_sigma_complete_ordered_set. - ∀f:O'→O'. ∀H:is_order_continuous ? f. - ∀a:bounded_above_sequence O'. - ∀p:is_increasing ? a. - f (sup ? a) = sup ? (mk_bounded_above_sequence ? (λi.f (a i)) ?). - [ apply (mk_is_bounded_above ? ? (f (sup ? a))); - apply ioc_is_upper_bound_f_sup; - assumption - | intros; - apply ioc_respects_sup; - assumption - ]. +lemma lt_coreflexive: ∀E.coreflexive ? (lt E). +intros (E); unfold; unfold Not; intros (x H); cases H (_ ABS); +apply (apart_coreflexive ? x ABS); qed. -theorem eq_f_sup_sup_f': - ∀O':dedekind_sigma_complete_ordered_set. - ∀f:O'→O'. ∀H:is_order_continuous ? f. - ∀a:bounded_above_sequence O'. - ∀p:is_increasing ? a. - ∀p':is_bounded_above ? (λi.f (a i)). - f (sup ? a) = sup ? (mk_bounded_above_sequence ? (λi.f (a i)) p'). - intros; - rewrite > (eq_f_sup_sup_f ? f H a H1); - apply sup_proof_irrelevant; - reflexivity. +lemma lt_transitive: ∀E.transitive ? (lt E). +intros (E); unfold; intros (x y z H1 H2); cases H1 (Lxy Axy); cases H2 (Lyz Ayz); +split; [apply (le_transitive ???? Lxy Lyz)] clear H1 H2; +cases Axy (H1 H1); cases Ayz (H2 H2); [1:cases (Lxy H1)|3:cases (Lyz H2)] +clear Axy Ayz;lapply (exc_cotransitive E) as c; unfold cotransitive in c; +lapply (exc_coreflexive E) as r; unfold coreflexive in r; +[1: lapply (c ?? y H1) as H3; cases H3 (H4 H4); [cases (Lxy H4)|cases (r ? H4)] +|2: lapply (c ?? x H2) as H3; cases H3 (H4 H4); [right; assumption|cases (Lxy H4)]] qed. -theorem eq_f_liminf_sup_f_inf: - ∀O':dedekind_sigma_complete_ordered_set. - ∀f:O'→O'. ∀H:is_order_continuous ? f. - ∀a:bounded_sequence O'. - let p1 := ? in - f (liminf ? a) = - sup ? - (mk_bounded_above_sequence ? - (λi.f (inf ? - (mk_bounded_below_sequence ? - (λj.a (i+j)) - ?))) - p1). - [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? a a)); - simplify; - intro; - apply (ib_lower_bound_is_lower_bound ? a a) - | apply (mk_is_bounded_above ? ? (f (sup ? a))); - unfold is_upper_bound; - intro; - apply (or_transitive ? ? O' ? (f (a n))); - [ generalize in match (ioc_is_lower_bound_f_inf ? ? H); - intro H1; - simplify in H1; - rewrite > (plus_n_O n) in ⊢ (? ? ? (? (? ? ? %))); - apply (H1 (mk_bounded_below_sequence O' (\lambda j:nat.a (n+j)) -(mk_is_bounded_below O' (\lambda j:nat.a (n+j)) (ib_lower_bound O' a a) - (\lambda j:nat.ib_lower_bound_is_lower_bound O' a a (n+j)))) O); - | elim daemon (*apply (ioc_is_upper_bound_f_sup ? ? ? H)*) - ] - | intros; - unfold liminf; - clearbody p1; - generalize in match (\lambda n:nat -.inf_respects_le O' - (mk_bounded_below_sequence O' (\lambda j:nat.a (plus n j)) - (mk_is_bounded_below O' (\lambda j:nat.a (plus n j)) - (ib_lower_bound O' a a) - (\lambda j:nat.ib_lower_bound_is_lower_bound O' a a (plus n j)))) - (ib_upper_bound O' a a) - (\lambda n1:nat.ib_upper_bound_is_upper_bound O' a a (plus n n1))); - intro p2; - apply (eq_f_sup_sup_f' ? f H (mk_bounded_above_sequence O' -(\lambda i:nat - .inf O' - (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j)) - (mk_is_bounded_below O' (\lambda j:nat.a (plus i j)) - (ib_lower_bound O' a a) - (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n))))) -(mk_is_bounded_above O' - (\lambda i:nat - .inf O' - (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j)) - (mk_is_bounded_below O' (\lambda j:nat.a (plus i j)) - (ib_lower_bound O' a a) - (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n))))) - (ib_upper_bound O' a a) p2))); - unfold bas_seq; - change with - (is_increasing ? (\lambda i:nat -.inf O' - (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j)) - (mk_is_bounded_below O' (\lambda j:nat.a (plus i j)) - (ib_lower_bound O' a a) - (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n)))))); - apply tail_inf_increasing - ]. +theorem lt_to_excede: ∀E:excedence.∀a,b:E. (a < b) → (b ≰ a). +intros (E a b Lab); cases Lab (LEab Aab); +cases Aab (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) qed. - - - - -definition lt ≝ λO:ordered_set.λa,b:O.a ≤ b ∧ a ≠ b. - -interpretation "Ordered set lt" 'lt a b = - (cic:/matita/ordered_sets/lt.con _ _ a b).