X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fdama%2Freals.ma;h=9e458e29102df18e4d84b35767c7095fd110f85e;hb=6d5f1a19aaa18813dca94b4e2e7e5ee3b97b4e4b;hp=63f48789924431bd4d78139fce63ea57d05b9719;hpb=08d8e4e422aafdc11e4230a87f2adee7facad809;p=helm.git diff --git a/matita/dama/reals.ma b/matita/dama/reals.ma index 63f487899..9e458e291 100644 --- a/matita/dama/reals.ma +++ b/matita/dama/reals.ma @@ -35,7 +35,7 @@ qed. definition max_seq: ∀R:real.∀x,y:R. nat → R. intros (R x y); - elim (to_cotransitive R (of_le R) R 0 (inv ? (sum_field ? (S n)) ?) (x-y)); + elim (of_cotransitive R 0 (inv ? (sum_field ? (S n)) ?) (x-y)); [ apply x | apply not_eq_sum_field_zero ; unfold; @@ -48,19 +48,21 @@ qed. axiom daemon: False. theorem cauchy_max_seq: ∀R:real.∀x,y:R. is_cauchy_seq ? (max_seq ? x y). +elim daemon. +(* intros; unfold; intros; exists; [ exact m | ]; (* apply (ex_intro ? ? m); *) intros; unfold max_seq; - elim (to_cotransitive R (of_le R) R 0 + elim (of_cotransitive R 0 (inv R (sum_field R (S N)) (not_eq_sum_field_zero R (S N) (le_S_S O N (le_O_n N)))) (x-y) (lt_zero_to_le_inv_zero R (S N) (not_eq_sum_field_zero R (S N) (le_S_S O N (le_O_n N))))); [ simplify; - elim (to_cotransitive R (of_le R) R 0 + elim (of_cotransitive R 0 (inv R (1+sum R (plus R) 0 1 m) (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m)))) (x-y) (lt_zero_to_le_inv_zero R (S m) @@ -75,16 +77,15 @@ theorem cauchy_max_seq: ∀R:real.∀x,y:R. is_cauchy_seq ? (max_seq ? x y). ] | simplify; split; - [ apply (to_transitive ? ? - (of_total_order_relation ? ? R) ? 0 ?); - [ apply (le_zero_x_to_le_opp_x_zero R ?) - | assumption - ] + [ apply (or_transitive ? ? R ? 0); + [ apply (le_zero_x_to_le_opp_x_zero R ?) + | assumption + ] | assumption ] ] | simplify; - elim (to_cotransitive R (of_le R) R 0 + elim (of_cotransitive R 0 (inv R (1+sum R (plus R) 0 1 m) (not_eq_sum_field_zero R (S m) (le_S_S O m (le_O_n m)))) (x-y) (lt_zero_to_le_inv_zero R (S m) @@ -98,7 +99,7 @@ theorem cauchy_max_seq: ∀R:real.∀x,y:R. is_cauchy_seq ? (max_seq ? x y). rewrite > eq_opp_plus_plus_opp_opp in H1; rewrite > eq_opp_opp_x_x in H1; rewrite > plus_comm in H1; - apply (to_transitive ? ? (of_total_order_relation ? ? R) ? 0 ?); + apply (or_transitive ? ? R ? 0); [ assumption | apply lt_zero_to_le_inv_zero ] @@ -112,7 +113,7 @@ theorem cauchy_max_seq: ∀R:real.∀x,y:R. is_cauchy_seq ? (max_seq ? x y). ] ] ]. - elim daemon. + elim daemon.*) qed. definition max: ∀R:real.R → R → R. @@ -146,7 +147,7 @@ lemma technical1: ∀R:real.lim R (to_zero R) (is_cauchy_seq_to_zero R) = 0. elim daemon. qed. -lemma abs_x_ge_O: \forall R: real. \forall x:R. 0 ≤ abs R x. +lemma abs_x_ge_O: \forall R: real. \forall x:R. (zero R) ≤ abs R x. intros; unfold abs; unfold max; @@ -156,7 +157,7 @@ lemma abs_x_ge_O: \forall R: real. \forall x:R. 0 ≤ abs R x. unfold to_zero; unfold max_seq; elim - (to_cotransitive R (of_le R) R 0 + (of_cotransitive R 0 (inv R (sum_field R (S n)) (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n)))) (x--x) (lt_zero_to_le_inv_zero R (S n)