X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Flibrary%2Falgebra%2Fgroups.ma;h=9ab695239665e8418d6279f8f1609334e7ddada1;hb=e1e31e9c6a0bcdc60ace7e2e650cb8d719d07e33;hp=97a3bd9ab7ec612f47a8527e02d888a3bdec3780;hpb=f4a6f16761d36983ba5705227d1b39d27036b7d5;p=helm.git diff --git a/matita/library/algebra/groups.ma b/matita/library/algebra/groups.ma index 97a3bd9ab..9ab695239 100644 --- a/matita/library/algebra/groups.ma +++ b/matita/library/algebra/groups.ma @@ -21,13 +21,13 @@ include "nat/compare.ma". record PreGroup : Type ≝ { premonoid:> PreMonoid; - opp: premonoid -> premonoid + inv: premonoid -> premonoid }. record isGroup (G:PreGroup) : Prop ≝ - { is_monoid: isMonoid G; - opp_is_left_inverse: is_left_inverse (mk_Monoid ? is_monoid) (opp G); - opp_is_right_inverse: is_right_inverse (mk_Monoid ? is_monoid) (opp G) + { is_monoid:> isMonoid G; + inv_is_left_inverse: is_left_inverse (mk_Monoid ? is_monoid) (inv G); + inv_is_right_inverse: is_right_inverse (mk_Monoid ? is_monoid) (inv G) }. record Group : Type ≝ @@ -35,29 +35,11 @@ record Group : Type ≝ group_properties:> isGroup pregroup }. -(*notation < "G" -for @{ 'monoid $G }. - -interpretation "Monoid coercion" 'monoid G = - (cic:/matita/algebra/groups/monoid.con G).*) - -notation < "G" -for @{ 'type_of_group $G }. - -interpretation "Type_of_group coercion" 'type_of_group G = - (cic:/matita/algebra/groups/Type_of_Group.con G). - -notation < "G" -for @{ 'magma_of_group $G }. - -interpretation "magma_of_group coercion" 'magma_of_group G = - (cic:/matita/algebra/groups/Magma_of_Group.con G). - notation "hvbox(x \sup (-1))" with precedence 89 -for @{ 'gopp $x }. +for @{ 'ginv $x }. -interpretation "Group inverse" 'gopp x = - (cic:/matita/algebra/groups/opp.con _ x). +interpretation "Group inverse" 'ginv x = + (cic:/matita/algebra/groups/inv.con _ x). definition left_cancellable ≝ λT:Type. λop: T -> T -> T. @@ -73,11 +55,11 @@ intros; unfold left_cancellable; unfold injective; intros (x y z); -rewrite < (e_is_left_unit ? (is_monoid ? (group_properties G))); -rewrite < (e_is_left_unit ? (is_monoid ? (group_properties G)) z); -rewrite < (opp_is_left_inverse ? (group_properties G) x); -rewrite > (associative ? (is_semi_group ? (is_monoid ? (group_properties G)))); -rewrite > (associative ? (is_semi_group ? (is_monoid ? (group_properties G)))); +rewrite < (e_is_left_unit ? G); +rewrite < (e_is_left_unit ? G z); +rewrite < (inv_is_left_inverse ? G x); +rewrite > (op_associative ? G); +rewrite > (op_associative ? G); apply eq_f; assumption. qed. @@ -90,555 +72,255 @@ unfold right_cancellable; unfold injective; simplify;fold simplify (op G); intros (x y z); -rewrite < (e_is_right_unit ? (is_monoid ? (group_properties G))); -rewrite < (e_is_right_unit ? (is_monoid ? (group_properties G)) z); -rewrite < (opp_is_right_inverse ? (group_properties G) x); -rewrite < (associative ? (is_semi_group ? (is_monoid ? (group_properties G)))); -rewrite < (associative ? (is_semi_group ? (is_monoid ? (group_properties G)))); +rewrite < (e_is_right_unit ? G); +rewrite < (e_is_right_unit ? G z); +rewrite < (inv_is_right_inverse ? G x); +rewrite < (op_associative ? G); +rewrite < (op_associative ? G); rewrite > H; reflexivity. qed. +theorem eq_inv_inv_x_x: ∀G:Group. ∀x:G. x \sup -1 \sup -1 = x. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (x \sup -1)); +rewrite > (inv_is_right_inverse ? G); +rewrite > (inv_is_left_inverse ? G); +reflexivity. +qed. + +theorem eq_opxy_e_to_eq_x_invy: + ∀G:Group. ∀x,y:G. x·y=1 → x=y \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? y); +rewrite > (inv_is_left_inverse ? G); +assumption. +qed. + +theorem eq_opxy_e_to_eq_invx_y: + ∀G:Group. ∀x,y:G. x·y=1 → x \sup -1=y. +intros; +apply (eq_op_x_y_op_x_z_to_eq ? x); +rewrite > (inv_is_right_inverse ? G); +symmetry; +assumption. +qed. + +theorem eq_opxy_z_to_eq_x_opzinvy: + ∀G:Group. ∀x,y,z:G. x·y=z → x = z·y \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? y); +rewrite > (op_associative ? G); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_right_unit ? G); +assumption. +qed. + +theorem eq_opxy_z_to_eq_y_opinvxz: + ∀G:Group. ∀x,y,z:G. x·y=z → y = x \sup -1·z. +intros; +apply (eq_op_x_y_op_x_z_to_eq ? x); +rewrite < (op_associative ? G); +rewrite > (inv_is_right_inverse ? G); +rewrite > (e_is_left_unit ? G); +assumption. +qed. + +theorem eq_inv_op_x_y_op_inv_y_inv_x: + ∀G:Group. ∀x,y:G. (x·y) \sup -1 = y \sup -1 · x \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (x·y)); +rewrite > (inv_is_left_inverse ? G); +rewrite < (op_associative ? G); +rewrite > (op_associative ? G (y \sup -1)); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_right_unit ? G); +rewrite > (inv_is_left_inverse ? G); +reflexivity. +qed. + +(* Morphisms *) -record finite_enumerable (T:Type) : Type ≝ - { order: nat; - repr: nat → T; - index_of: T → nat; - index_of_sur: ∀x.index_of x ≤ order; - index_of_repr: ∀n. n≤order → index_of (repr n) = n; - repr_index_of: ∀x. repr (index_of x) = x +record morphism (G,G':Group) : Type ≝ + { image: G → G'; + f_morph: ∀x,y:G.image(x·y) = image x · image y }. -notation "hvbox(C \sub i)" with precedence 89 -for @{ 'repr $C $i }. +notation "hvbox(f˜ x)" with precedence 79 +for @{ 'morimage $f $x }. -(* CSC: multiple interpretations in the same file are not considered in the - right order -interpretation "Finite_enumerable representation" 'repr C i = - (cic:/matita/algebra/groups/repr.con C _ i).*) +interpretation "Morphism image" 'morimage f x = + (cic:/matita/algebra/groups/image.con _ _ f x). -notation < "hvbox(|C|)" with precedence 89 -for @{ 'card $C }. +theorem morphism_to_eq_f_1_1: + ∀G,G'.∀f:morphism G G'.f˜1 = 1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (f˜1)); +rewrite > (e_is_left_unit ? G'); +rewrite < f_morph; +rewrite > (e_is_left_unit ? G); +reflexivity. +qed. + +theorem eq_image_inv_inv_image: + ∀G,G'.∀f:morphism G G'. + ∀x.f˜(x \sup -1) = (f˜x) \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (f˜x)); +rewrite > (inv_is_left_inverse ? G'); +rewrite < f_morph; +rewrite > (inv_is_left_inverse ? G); +apply (morphism_to_eq_f_1_1 ? ? f). +qed. + +record monomorphism (G,G':Group) : Type ≝ + { morphism:> morphism G G'; + injective: injective ? ? (image ? ? morphism) + }. -interpretation "Finite_enumerable order" 'card C = - (cic:/matita/algebra/groups/order.con C _). +(* Subgroups *) -record finite_enumerable_SemiGroup : Type ≝ - { semigroup:> SemiGroup; - is_finite_enumerable:> finite_enumerable semigroup +record subgroup (G:Group) : Type ≝ + { group:> Group; + embed:> monomorphism group G }. -notation < "S" -for @{ 'semigroup_of_finite_enumerable_semigroup $S }. +notation "hvbox(x \sub H)" with precedence 79 +for @{ 'subgroupimage $H $x }. -interpretation "Semigroup_of_finite_enumerable_semigroup" - 'semigroup_of_finite_enumerable_semigroup S -= - (cic:/matita/algebra/groups/semigroup.con S). +interpretation "Subgroup image" 'subgroupimage H x = + (cic:/matita/algebra/groups/image.con _ _ + (cic:/matita/algebra/groups/morphism_OF_subgroup.con _ H) x). -notation < "S" -for @{ 'magma_of_finite_enumerable_semigroup $S }. +definition member_of_subgroup ≝ + λG.λH:subgroup G.λx:G.∃y.x=y \sub H. -interpretation "Magma_of_finite_enumerable_semigroup" - 'magma_of_finite_enumerable_semigroup S -= - (cic:/matita/algebra/groups/Magma_of_finite_enumerable_SemiGroup.con S). - -notation < "S" -for @{ 'type_of_finite_enumerable_semigroup $S }. +notation "hvbox(x break ∈ H)" with precedence 79 +for @{ 'member_of $x $H }. -interpretation "Type_of_finite_enumerable_semigroup" - 'type_of_finite_enumerable_semigroup S -= - (cic:/matita/algebra/groups/Type_of_finite_enumerable_SemiGroup.con S). +notation "hvbox(x break ∉ H)" with precedence 79 +for @{ 'not_member_of $x $H }. -interpretation "Finite_enumerable representation" 'repr S i = - (cic:/matita/algebra/groups/repr.con S - (cic:/matita/algebra/groups/is_finite_enumerable.con S) i). +interpretation "Member of subgroup" 'member_of x H = + (cic:/matita/algebra/groups/member_of_subgroup.con _ H x). + +interpretation "Not member of subgroup" 'not_member_of x H = + (cic:/matita/logic/connectives/Not.con + (cic:/matita/algebra/groups/member_of_subgroup.con _ H x)). -notation "hvbox(ι e)" with precedence 60 -for @{ 'index_of_finite_enumerable_semigroup $e }. +(* Left cosets *) -interpretation "Index_of_finite_enumerable representation" - 'index_of_finite_enumerable_semigroup e -= - (cic:/matita/algebra/groups/index_of.con _ - (cic:/matita/algebra/groups/is_finite_enumerable.con _) e). +record left_coset (G:Group) : Type ≝ + { element: G; + subgrp: subgroup G + }. +(* Here I would prefer 'magma_op, but this breaks something in the next definition *) +interpretation "Left_coset" 'times x C = + (cic:/matita/algebra/groups/left_coset.ind#xpointer(1/1/1) _ x C). -(* several definitions/theorems to be moved somewhere else *) +definition member_of_left_coset ≝ + λG:Group.λC:left_coset G.λx:G. + ∃y.x=(element ? C)·y \sub (subgrp ? C). -definition ltb ≝ λn,m. leb n m ∧ notb (eqb n m). +interpretation "Member of left_coset" 'member_of x C = + (cic:/matita/algebra/groups/member_of_left_coset.con _ C x). -theorem not_eq_to_le_to_lt: ∀n,m. n≠m → n≤m → n (S_pred m); - [ apply le_S_S; - assumption - | assumption - ] +unfold member_of_subgroup in H1; +elim H1; +clear H1; +exists; +[ apply (a\sup-1 · x1) +| rewrite > f_morph; + rewrite > eq_image_inv_inv_image; + rewrite < H2; + rewrite > eq_inv_op_x_y_op_inv_y_inv_x; + rewrite > eq_inv_inv_x_x; + rewrite < (op_associative ? G); + rewrite < (op_associative ? G); + rewrite > (inv_is_right_inverse ? G); + rewrite > (e_is_left_unit ? G); + reflexivity ]. qed. -theorem le_to_le_pred: - ∀n,m. n ≤ m → pred n ≤ pred m. -intros 2; -elim n; -[ simplify; - apply le_O_n -| simplify; - generalize in match H1; - clear H1; - elim m; - [ elim (not_le_Sn_O ? H1) - | simplify; - apply le_S_S_to_le; - assumption - ] -]. -qed. - -theorem lt_n_m_to_not_lt_m_Sn: ∀n,m. n < m → m ≮ S n. +theorem Not_member_of_subgroup_to_left_coset_disjoint: + ∀G.∀x,y.∀H:subgroup G.(x \sup -1 ·y) ∉ H → x*H ∥ y*H. intros; +simplify; unfold Not; -intro; -unfold lt in H; -unfold lt in H1; -generalize in match (le_S_S ? ? H); -intro; -generalize in match (transitive_le ? ? ? H2 H1); -intro; -apply (not_le_Sn_n ? H3). +intros (x'); +apply H1; +unfold member_of_subgroup; +elim H2; +apply (ex_intro ? ? (x'·a \sup -1)); +rewrite > f_morph; +apply (eq_op_x_y_op_z_y_to_eq ? (a \sub H)); +rewrite > (op_associative ? G); +rewrite < H3; +rewrite > (op_associative ? G); +rewrite < f_morph; +rewrite > (inv_is_left_inverse ? H); +rewrite < (op_associative ? G); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_left_unit ? G); +rewrite < (f_morph ? ? H); +rewrite > (e_is_right_unit ? H); +reflexivity. qed. -theorem lt_S_S: ∀n,m. n < m → S n < S m. +(*CSC: here the coercion Type_of_Group cannot be omitted. Why? *) +theorem in_x_mk_left_coset_x_H: + ∀G.∀x:Type_OF_Group G.∀H:subgroup G.x ∈ (x*H). intros; -unfold lt in H; -apply (le_S_S ? ? H). -qed. - -theorem lt_O_S: ∀n. O < S n. -intro; -unfold lt; -apply le_S_S; -apply le_O_n. +simplify; +apply (ex_intro ? ? 1); +rewrite > morphism_to_eq_f_1_1; +rewrite > (e_is_right_unit ? G); +reflexivity. qed. -theorem le_n_m_to_lt_m_Sn_to_eq_n_m: ∀n,m. n ≤ m → m < S n → n=m. -intros; -unfold lt in H1; -generalize in match (le_S_S_to_le ? ? H1); -intro; -apply cic:/matita/nat/orders/antisym_le.con; -assumption. -qed. +(* Normal Subgroups *) -theorem pigeonhole: - ∀n:nat.∀f:nat→nat. - (∀x,y.x≤n → y≤n → f x = f y → x=y) → - (∀m. m ≤ n → f m ≤ n) → - ∀x. x≤n → ∃y.f y = x ∧ y ≤ n. -intro; -elim n; -[ apply (ex_intro ? ? O); - split; - [ rewrite < (le_n_O_to_eq ? H2); - rewrite < (le_n_O_to_eq ? (H1 O ?)); - [ reflexivity - | apply le_n - ] - | apply le_n - ] -| clear n; - letin f' ≝ - (λx. - let fSn1 ≝ f (S n1) in - let fx ≝ f x in - match ltb fSn1 fx with - [ true ⇒ pred fx - | false ⇒ fx - ]); - cut (∀x,y. x ≤ n1 → y ≤ n1 → f' x = f' y → x=y); - [ cut (∀x. x ≤ n1 → f' x ≤ n1); - [ apply (nat_compare_elim (f (S n1)) x); - [ intro; - elim (H f' ? ? (pred x)); - [ simplify in H5; - clear Hcut; - clear Hcut1; - clear f'; - elim H5; - clear H5; - apply (ex_intro ? ? a); - split; - [ generalize in match (eq_f ? ? S ? ? H6); - clear H6; - intro; - rewrite < S_pred in H5; - [ generalize in match H4; - clear H4; - rewrite < H5; - clear H5; - apply (ltb_elim (f (S n1)) (f a)); - [ simplify; - intros; - rewrite < S_pred; - [ reflexivity - | apply (ltn_to_ltO ? ? H4) - ] - | simplify; - intros; - generalize in match (not_lt_to_le ? ? H4); - clear H4; - intro; - generalize in match (le_n_m_to_lt_m_Sn_to_eq_n_m ? ? H6 H5); - intro; - generalize in match (H1 ? ? ? ? H4); - [ intro; - generalize in match (le_n_m_to_lt_m_Sn_to_eq_n_m ? ? H6 H5); - intro; - generalize in match (H1 ? ? ? ? H9); - [ intro; - rewrite > H10 in H7; - elim (not_le_Sn_n ? H7) - | rewrite > H8; - apply le_n - | apply le_n - ] - | apply le_S; - assumption - | apply le_n - ] - ] - | apply (ltn_to_ltO ? ? H4) - ] - | apply le_S; - assumption - ] - | apply Hcut - | apply Hcut1 - | apply le_S_S_to_le; - rewrite < S_pred; - [ assumption - | apply (ltn_to_ltO ? ? H4) - ] - ] - | intros; - apply (ex_intro ? ? (S n1)); - split; - [ assumption - | constructor 1 - ] - | intro; - elim (H f' ? ? x); - [ simplify in H5; - clear Hcut; - clear Hcut1; - clear f'; - elim H5; - clear H5; - apply (ex_intro ? ? a); - split; - [ generalize in match H4; - clear H4; - rewrite < H6; - clear H6; - apply (ltb_elim (f (S n1)) (f a)); - [ simplify; - intros; - generalize in match (lt_S_S ? ? H5); - intro; - rewrite < S_pred in H6; - [ elim (lt_n_m_to_not_lt_m_Sn ? ? H4 H6) - | apply (ltn_to_ltO ? ? H4) - ] - | simplify; - intros; - reflexivity - ] - | apply le_S; - assumption - ] - | apply Hcut - | apply Hcut1 - | rewrite > (pred_Sn n1); - simplify; - generalize in match (H2 (S n1)); - intro; - generalize in match (lt_to_le_to_lt ? ? ? H4 (H5 (le_n ?))); - intro; - unfold lt in H6; - apply le_S_S_to_le; - assumption - ] - ] - | unfold f'; - simplify; - intro; - apply (ltb_elim (f (S n1)) (f x1)); - simplify; - intros; - [ generalize in match (H2 x1); - intro; - change in match n1 with (pred (S n1)); - apply le_to_le_pred; - apply H6; - apply le_S; - assumption - | generalize in match (H2 (S n1) (le_n ?)); - intro; - generalize in match (not_lt_to_le ? ? H4); - intro; - generalize in match (transitive_le ? ? ? H7 H6); - intro; - cut (f x1 ≠ f (S n1)); - [ generalize in match (not_eq_to_le_to_lt ? ? Hcut1 H7); - intro; - unfold lt in H9; - generalize in match (transitive_le ? ? ? H9 H6); - intro; - apply le_S_S_to_le; - assumption - | unfold Not; - intro; - generalize in match (H1 ? ? ? ? H9); - [ intro; - rewrite > H10 in H5; - apply (not_le_Sn_n ? H5) - | apply le_S; - assumption - | apply le_n - ] - ] - ] - ] - | intros 4; - unfold f'; - simplify; - apply (ltb_elim (f (S n1)) (f x1)); - simplify; - apply (ltb_elim (f (S n1)) (f y)); - simplify; - intros; - [ cut (f x1 = f y); - [ apply (H1 ? ? ? ? Hcut); - apply le_S; - assumption - | apply eq_pred_to_eq; - [ apply (ltn_to_ltO ? ? H7) - | apply (ltn_to_ltO ? ? H6) - | assumption - ] - ] - | (* pred (f x1) = f y absurd since y ≠ S n1 and thus f y ≠ f (S n1) - so that f y < f (S n1) < f x1; hence pred (f x1) = f y is absurd *) - cut (y < S n1); - [ generalize in match (lt_to_not_eq ? ? Hcut); - intro; - cut (f y ≠ f (S n1)); - [ cut (f y < f (S n1)); - [ rewrite < H8 in Hcut2; - unfold lt in Hcut2; - unfold lt in H7; - generalize in match (le_S_S ? ? Hcut2); - intro; - generalize in match (transitive_le ? ? ? H10 H7); - intros; - rewrite < (S_pred (f x1)) in H11; - [ elim (not_le_Sn_n ? H11) - | fold simplify ((f (S n1)) < (f x1)) in H7; - apply (ltn_to_ltO ? ? H7) - ] - | apply not_eq_to_le_to_lt; - [ assumption - | apply not_lt_to_le; - assumption - ] - ] - | unfold Not; - intro; - apply H9; - apply (H1 ? ? ? ? H10); - [ apply lt_to_le; - assumption - | constructor 1 - ] - ] - | unfold lt; - apply le_S_S; - assumption - ] - | (* f x1 = pred (f y) absurd since it implies S (f x1) = f y and - f x1 ≤ f (S n1) < f y = S (f x1) so that f x1 = f (S n1); by - injectivity x1 = S n1 that is absurd since x1 ≤ n1 *) - generalize in match (eq_f ? ? S ? ? H8); - intro; - rewrite < S_pred in H9; - [ rewrite < H9 in H6; - generalize in match (not_lt_to_le ? ? H7); - intro; - unfold lt in H6; - generalize in match (le_S_S ? ? H10); - intro; - generalize in match (antisym_le ? ? H11 H6); - intro; - generalize in match (inj_S ? ? H12); - intro; - generalize in match (H1 ? ? ? ? H13); - [ intro; - rewrite > H14 in H4; - elim (not_le_Sn_n ? H4) - | apply le_S; - assumption - | apply le_n - ] - | apply (ltn_to_ltO ? ? H6) - ] - | apply (H1 ? ? ? ? H8); - apply le_S; - assumption - ] - ] -]. -qed. +record normal_subgroup (G:Group) : Type ≝ + { ns_subgroup:> subgroup G; + normal:> ∀x:G.∀y:ns_subgroup.(x·y \sub ns_subgroup·x \sup -1) ∈ ns_subgroup + }. -theorem finite_enumerable_SemiGroup_to_left_cancellable_to_right_cancellable_to_isMonoid: - ∀G:finite_enumerable_SemiGroup. - left_cancellable ? (op G) → - right_cancellable ? (op G) → - ∃e:G. isMonoid (mk_PreMonoid G e). +(*CSC: I have not defined yet right cosets +theorem foo: + ∀G.∀H:normal_subgroup G.∀x.x*H=H*x. +*) +(* +theorem member_of_left_coset_mk_left_coset_x_H_a_to_member_of_left_coset_mk_left_coset_y_H_b_to_member_of_left_coset_mk_left_coset_op_x_y_H_op_a_b: + ∀G.∀H:normal_subgroup G.∀x,y,a,b. + a ∈ (x*H) → b ∈ (y*H) → (a·b) ∈ ((x·y)*H). intros; -letin f ≝ (λn.ι(G \sub O · G \sub n)); -cut (∀n.n ≤ order ? (is_finite_enumerable G) → ∃m.f m = n); -[ letin EX ≝ (Hcut O ?); - [ apply le_O_n - | clearbody EX; - clear Hcut; - unfold f in EX; - elim EX; - clear EX; - letin HH ≝ (eq_f ? ? (repr ? (is_finite_enumerable G)) ? ? H2); - clearbody HH; - rewrite > (repr_index_of ? (is_finite_enumerable G)) in HH; - apply (ex_intro ? ? (G \sub a)); - letin GOGO ≝ (refl_eq ? (repr ? (is_finite_enumerable G) O)); - clearbody GOGO; - rewrite < HH in GOGO; - rewrite < HH in GOGO:(? ? % ?); - rewrite > (associative ? G) in GOGO; - letin GaGa ≝ (H ? ? ? GOGO); - clearbody GaGa; - clear GOGO; - constructor 1; - [ simplify; - apply (semigroup_properties G) - | unfold is_left_unit; intro; - letin GaxGax ≝ (refl_eq ? (G \sub a ·x)); - clearbody GaxGax; - rewrite < GaGa in GaxGax:(? ? % ?); - rewrite > (associative ? (semigroup_properties G)) in GaxGax; - apply (H ? ? ? GaxGax) - | unfold is_right_unit; intro; - letin GaxGax ≝ (refl_eq ? (x·G \sub a)); - clearbody GaxGax; - rewrite < GaGa in GaxGax:(? ? % ?); - rewrite < (associative ? (semigroup_properties G)) in GaxGax; - apply (H1 ? ? ? GaxGax) - ] - ] -| intros; - elim (pigeonhole (order ? G) f ? ? ? H2); - [ apply (ex_intro ? ? a); - elim H3; - assumption - | intros; - change in H5 with (ι(G \sub O · G \sub x) = ι(G \sub O · G \sub y)); - cut (G \sub (ι(G \sub O · G \sub x)) = G \sub (ι(G \sub O · G \sub y))); - [ rewrite > (repr_index_of ? ? (G \sub O · G \sub x)) in Hcut; - rewrite > (repr_index_of ? ? (G \sub O · G \sub y)) in Hcut; - generalize in match (H ? ? ? Hcut); - intro; - generalize in match (eq_f ? ? (index_of ? G) ? ? H6); - intro; - rewrite > index_of_repr in H7; - rewrite > index_of_repr in H7; - assumption - | apply eq_f; - assumption - ] - | intros; - apply index_of_sur - ] -]. +simplify; +qed. +*)