X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fiteration2.ma;h=4f0238498c500d0409c25e3d73196e6d3704dd31;hb=b49683e0bc65391911be8b1e648ddb1ec61665b9;hp=e1cd09a207e369c1280a7b20b02fd1069d478c01;hpb=45d665041eae44ef5527e2c5a65329493d742ef3;p=helm.git diff --git a/matita/library/nat/iteration2.ma b/matita/library/nat/iteration2.ma index e1cd09a20..4f0238498 100644 --- a/matita/library/nat/iteration2.ma +++ b/matita/library/nat/iteration2.ma @@ -12,11 +12,12 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/nat/iteration2.ma". +set "baseuri" "cic:/matita/nat/iteration2". include "nat/primes.ma". include "nat/ord.ma". include "nat/generic_sigma_p.ma". +include "nat/count.ma".(*necessary just to use bool_to_nat and bool_to_nat_andb*) (* sigma_p on nautral numbers is a specialization of sigma_p_gen *) @@ -229,3 +230,354 @@ apply (distributive_times_plus_sigma_p_generic nat plus O times n k p g) ] qed. +(*some properties of sigma_p invoked with an "always true" predicate (in this + way sigma_p just counts the elements, without doing any control) or with + the nat \to nat function which always returns (S O). + It 's not easily possible proving these theorems in a general form + in generic_sigma_p.ma + *) + +theorem sigma_p_true: \forall n:nat. +(sigma_p n (\lambda x.true) (\lambda x.S O)) = n. +intros. +elim n +[ simplify. + reflexivity +| rewrite > (true_to_sigma_p_Sn n1 (\lambda x:nat.true) (\lambda x:nat.S O)) + [ rewrite > H. + simplify. + reflexivity + | reflexivity + ] +] +qed. + +theorem sigma_P_SO_to_sigma_p_true: \forall n:nat. \forall g:nat \to bool. +sigma_p n g (\lambda n:nat. (S O)) = +sigma_p n (\lambda x:nat.true) (\lambda i:nat.bool_to_nat (g i)). +intros. +elim n +[ simplify. + reflexivity +| cut ((g n1) = true \lor (g n1) = false) + [ rewrite > true_to_sigma_p_Sn in \vdash (? ? ? %) + [ elim Hcut + [ rewrite > H1. + rewrite > true_to_sigma_p_Sn in \vdash (? ? % ?) + [ simplify. + apply eq_f. + assumption + | assumption + ] + | rewrite > H1. + rewrite > false_to_sigma_p_Sn in \vdash (? ? % ?) + [ simplify. + assumption + | assumption + ] + ] + | reflexivity + ] + | elim (g n1) + [ left. + reflexivity + | right. + reflexivity + ] + ] +] +qed. + +(* I introduce an equivalence in the form map_iter_i in order to use + * the existing result about permutation in that part of the library. + *) + +theorem eq_map_iter_i_sigma_p_alwaysTrue: \forall n:nat.\forall g:nat \to nat. +map_iter_i n g plus O = sigma_p (S n) (\lambda c:nat.true) g. +intros. +elim n +[ simplify. + rewrite < plus_n_O. + reflexivity +| rewrite > true_to_sigma_p_Sn + [ simplify in \vdash (? ? % ?). + rewrite < plus_n_O. + apply eq_f. + assumption + | reflexivity + ] +] +qed. + +theorem sigma_p_plus_1: \forall n:nat. \forall f,g:nat \to nat. +sigma_p n (\lambda b:nat. true) (\lambda a:nat.(f a) + (g a)) = +sigma_p n (\lambda b:nat. true) f + sigma_p n (\lambda b:nat. true) g. +intros. +elim n +[ simplify. + reflexivity +| rewrite > true_to_sigma_p_Sn + [ rewrite > (true_to_sigma_p_Sn n1 (\lambda c:nat.true) f) + [ rewrite > (true_to_sigma_p_Sn n1 (\lambda c:nat.true) g) + [ rewrite > assoc_plus in \vdash (? ? ? %). + rewrite < assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < sym_plus in \vdash (? ? ? (? ? (? % ?))). + rewrite > assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < assoc_plus in \vdash (? ? ? %). + apply eq_f. + assumption + | reflexivity + ] + | reflexivity + ] + | reflexivity + ] +] +qed. + + +theorem eq_sigma_p_sigma_p_times1 : \forall n,m:nat.\forall f:nat \to nat. +sigma_p (n*m) (\lambda x:nat.true) f = +sigma_p m (\lambda x:nat.true) + (\lambda a.(sigma_p n (\lambda x:nat.true) (\lambda b.f (b*m + a)))). +intro. +elim n +[ simplify. + elim m + [ simplify. + reflexivity + | rewrite > true_to_sigma_p_Sn + [ rewrite < H. + reflexivity + | reflexivity + ] + ] +| change in \vdash (? ? ? (? ? ? (\lambda a:?.%))) with ((f ((n1*m)+a)) + + (sigma_p n1 (\lambda x:nat.true) (\lambda b:nat.f (b*m +a)))). + rewrite > sigma_p_plus_1 in \vdash (? ? ? %). + rewrite > (sym_times (S n1) m). + rewrite < (times_n_Sm m n1). + rewrite > sigma_p_plus in \vdash (? ? % ?). + apply eq_f2 + [ rewrite < (sym_times m n1). + apply eq_sigma_p + [ intros. + reflexivity + | intros. + rewrite < (sym_plus ? (m * n1)). + reflexivity + ] + | rewrite > (sym_times m n1). + apply H + ] +] +qed. + +theorem eq_sigma_p_sigma_p_times2 : \forall n,m:nat.\forall f:nat \to nat. +sigma_p (n *m) (\lambda c:nat.true) f = +sigma_p n (\lambda c:nat.true) + (\lambda a.(sigma_p m (\lambda c:nat.true) (\lambda b:nat.f (b* n + a)))). +intros. +rewrite > sym_times. +apply eq_sigma_p_sigma_p_times1. +qed. + + +theorem sigma_p_times:\forall n,m:nat. +\forall f,f1,f2:nat \to bool. +\forall g:nat \to nat \to nat. +\forall g1,g2: nat \to nat. +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g b a) < (S n)*(S m)) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g1 (g b a)) = a) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g2 (g b a)) = b) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to f (g b a) = andb (f2 b) (f1 a)) \to +(sigma_p ((S n) * (S m)) f (\lambda c:nat.(S O))) = +sigma_p (S n) f1 (\lambda c:nat.(S O)) * sigma_p (S m) f2 (\lambda c:nat.(S O)). +intros. + +rewrite > (sigma_P_SO_to_sigma_p_true ). +rewrite > (S_pred ((S n)*(S m))) in \vdash (? ? (? % ? ?) ?) +[ rewrite < (eq_map_iter_i_sigma_p_alwaysTrue (pred ((S n)* (S m)))). + rewrite > (permut_to_eq_map_iter_i plus assoc_plus sym_plus ? ? ? + (\lambda i.g (div i (S n)) (mod i (S n)))) + [ rewrite > eq_map_iter_i_sigma_p_alwaysTrue. + rewrite < S_pred + [ rewrite > eq_sigma_p_sigma_p_times2. + apply (trans_eq ? ? (sigma_p (S n) (\lambda c:nat.true) + (\lambda a. sigma_p (S m) (\lambda c:nat.true) + (\lambda b.(bool_to_nat (f2 b))*(bool_to_nat (f1 a)))))) + [ apply eq_sigma_p;intros + [ reflexivity + | apply eq_sigma_p;intros + [ reflexivity + | + rewrite > (div_mod_spec_to_eq (x1*(S n) + x) (S n) ((x1*(S n) + x)/(S n)) + ((x1*(S n) + x) \mod (S n)) x1 x) + [ rewrite > (div_mod_spec_to_eq2 (x1*(S n) + x) (S n) ((x1*(S n) + x)/(S n)) + ((x1*(S n) + x) \mod (S n)) x1 x) + [ rewrite > H3 + [ apply bool_to_nat_andb + | assumption + | assumption + ] + | apply div_mod_spec_div_mod. + apply lt_O_S + | constructor 1 + [ assumption + | reflexivity + ] + ] + | apply div_mod_spec_div_mod. + apply lt_O_S + | constructor 1 + [ assumption + | reflexivity + ] + ] + ] + ] + | apply (trans_eq ? ? + (sigma_p (S n) (\lambda c:nat.true) (\lambda n.((bool_to_nat (f1 n)) * + (sigma_p (S m) (\lambda c:nat.true) (\lambda n.bool_to_nat (f2 n))))))) + [ apply eq_sigma_p;intros + [ reflexivity + | rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p;intros + [ reflexivity + | rewrite > sym_times. + reflexivity + ] + ] + | apply sym_eq. + rewrite > sigma_P_SO_to_sigma_p_true. + rewrite > sigma_P_SO_to_sigma_p_true in \vdash (? ? (? ? %) ?). + rewrite > sym_times. + rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p;intros + [ reflexivity + | rewrite > distributive_times_plus_sigma_p. + rewrite < sym_times. + rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p; + intros; reflexivity + ] + ] + ] + | apply lt_O_times_S_S + ] + + | unfold permut. + split + [ intros. + rewrite < plus_n_O. + apply le_S_S_to_le. + rewrite < S_pred in \vdash (? ? %) + [ change with ((g (i/(S n)) (i \mod (S n))) \lt (S n)*(S m)). + apply H + [ apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + rewrite > plus_n_O in \vdash (? ? %). + rewrite > sym_times. + assumption + | apply lt_O_times_S_S + ] + ] + ] + | apply lt_O_times_S_S + ] + | rewrite < plus_n_O. + unfold injn. + intros. + cut (i < (S n)*(S m)) + [ cut (j < (S n)*(S m)) + [ cut ((i \mod (S n)) < (S n)) + [ cut ((i/(S n)) < (S m)) + [ cut ((j \mod (S n)) < (S n)) + [ cut ((j/(S n)) < (S m)) + [ rewrite > (div_mod i (S n)) + [ rewrite > (div_mod j (S n)) + [ rewrite < (H1 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3). + rewrite < (H2 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3) in \vdash (? ? (? % ?) ?). + rewrite < (H1 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5). + rewrite < (H2 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5) in \vdash (? ? ? (? % ?)). + rewrite > H6. + reflexivity + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? j) + [ rewrite > (div_mod j (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. apply le_S_S. + apply le_O_n + ] + | rewrite < sym_times. + assumption + ] + ] + | apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | rewrite < sym_times. + assumption + ] + ] + | apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | apply lt_O_times_S_S + ] + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | apply lt_O_times_S_S + ] + ] + ] + | intros. + apply False_ind. + apply (not_le_Sn_O m1 H4) + ] +| apply lt_O_times_S_S +] +qed.