X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Flibrary_auto%2Fauto%2Fnat%2Fnth_prime.ma;h=88234154ba1e7c7fdeae39ef47709af53a25ed47;hb=a5bfa65b18a876fca982270f673c686a7d124f65;hp=edc677b2fdfcf192b63fbe9b170889c0e8444bfb;hpb=1b839e0367f89503398442b7990fb6b6d1fa2152;p=helm.git diff --git a/matita/library_auto/auto/nat/nth_prime.ma b/matita/library_auto/auto/nat/nth_prime.ma index edc677b2f..88234154b 100644 --- a/matita/library_auto/auto/nat/nth_prime.ma +++ b/matita/library_auto/auto/nat/nth_prime.ma @@ -12,7 +12,7 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/library_auto/nat/nth_prime". +set "baseuri" "cic:/matita/library_autobatch/nat/nth_prime". include "auto/nat/primes.ma". include "auto/nat/lt_arith.ma". @@ -46,12 +46,11 @@ unfold Not. intro. apply (not_divides_S_fact n (smallest_factor(S n!))) [ apply lt_SO_smallest_factor. - auto - (*unfold lt. - apply le_S_S. + unfold lt.autobatch + (*apply le_S_S. apply le_SO_fact*) | assumption -| auto +| autobatch (*apply divides_smallest_factor_n. unfold lt. apply le_S_S. @@ -64,7 +63,7 @@ n < m \land m \le S n! \land (prime m). intros. elim H [ apply (ex_intro nat ? (S(S O))). - split;auto + split;autobatch (*[ split [ apply (le_n (S(S O))) | apply (le_n (S(S O))) @@ -73,16 +72,15 @@ elim H ]*) | apply (ex_intro nat ? (smallest_factor (S (S n1)!))). split - [ auto + [ autobatch (*split [ apply smallest_factor_fact | apply le_smallest_factor_n ]*) | (* Andrea: ancora hint non lo trova *) apply prime_smallest_factor_n. - auto - (*unfold lt. - apply le_S. + unfold lt.autobatch + (*apply le_S. apply le_SSO_fact. unfold lt. apply le_S_S. @@ -101,22 +99,22 @@ match n with (* it works, but nth_prime 4 takes already a few minutes - it must compute factorial of 7 ...*) - +(* theorem example11 : nth_prime (S(S O)) = (S(S(S(S(S O))))). -auto. +autobatch. (*normalize.reflexivity.*) qed. theorem example12: nth_prime (S(S(S O))) = (S(S(S(S(S(S(S O))))))). -auto. +autobatch. (*normalize.reflexivity.*) qed. theorem example13 : nth_prime (S(S(S(S O)))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). -auto. +autobatch. (*normalize.reflexivity.*) qed. - +*) (* theorem example14 : nth_prime (S(S(S(S(S O))))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). normalize.reflexivity. @@ -125,7 +123,7 @@ normalize.reflexivity. theorem prime_nth_prime : \forall n:nat.prime (nth_prime n). intro. apply (nat_case n) -[ auto +[ autobatch (*simplify. apply (primeb_to_Prop (S(S O)))*) | intro. @@ -143,7 +141,7 @@ apply (nat_case n) exact (smallest_factor_fact (nth_prime m)) | (* maybe we could factorize this proof *) apply plus_to_minus. - auto + autobatch (*apply plus_minus_m_m. apply le_S_S. apply le_n_fact_n*) @@ -152,9 +150,8 @@ apply (nat_case n) ] | apply prime_to_primeb_true. apply prime_smallest_factor_n. - auto - (*unfold lt. - apply le_S_S. + unfold lt.autobatch + (*apply le_S_S. apply le_SO_fact*) ] ] @@ -173,7 +170,7 @@ cut (upper_bound - (upper_bound -(S previous_prime)) = (S previous_prime)) [ rewrite < Hcut in \vdash (? % ?). apply le_min_aux | apply plus_to_minus. - auto + autobatch (*apply plus_minus_m_m. apply le_S_S. apply le_n_fact_n*) @@ -184,21 +181,20 @@ variant lt_nth_prime_n_nth_prime_Sn :\forall n:nat. (nth_prime n) < (nth_prime (S n)) \def increasing_nth_prime. theorem injective_nth_prime: injective nat nat nth_prime. -auto. +autobatch. (*apply increasing_to_injective. apply increasing_nth_prime.*) qed. theorem lt_SO_nth_prime_n : \forall n:nat. (S O) \lt nth_prime n. intros. -(*usando la tattica auto qui, dopo svariati minuti la computazione non era +(*usando la tattica autobatch qui, dopo svariati minuti la computazione non era * ancora terminata *) elim n -[ auto - (*unfold lt. - apply le_n*) -| auto +[ unfold lt.autobatch + (*apply le_n*) +| autobatch (*apply (trans_lt ? (nth_prime n1)) [ assumption | apply lt_nth_prime_n_nth_prime_Sn @@ -208,7 +204,7 @@ qed. theorem lt_O_nth_prime_n : \forall n:nat. O \lt nth_prime n. intros. -auto. +autobatch. (*apply (trans_lt O (S O)) [ unfold lt. apply le_n @@ -219,7 +215,7 @@ qed. theorem ex_m_le_n_nth_prime_m: \forall n: nat. nth_prime O \le n \to \exists m. nth_prime m \le n \land n < nth_prime (S m). -auto. +autobatch. (*intros. apply increasing_to_le2 [ exact lt_nth_prime_n_nth_prime_Sn @@ -238,7 +234,7 @@ apply (lt_min_aux_to_false primeb upper_bound (upper_bound - (S previous_prime)) [ rewrite > Hcut. assumption | apply plus_to_minus. - auto + autobatch (*apply plus_minus_m_m. apply le_S_S. apply le_n_fact_n*) @@ -258,14 +254,14 @@ cut (\exists m. nth_prime m \le p \land p < nth_prime (S m)) [ elim Hcut1 [ absurd (prime p) [ assumption - | auto + | autobatch (*apply (lt_nth_prime_to_not_prime a);assumption*) ] - | auto + | autobatch (*apply (ex_intro nat ? a). assumption*) ] - | auto + | autobatch (*apply le_to_or_lt_eq. assumption*) ]