X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=matita%2Fmatita%2Fcontribs%2Flambda_delta%2Fground_2%2Fstar.ma;h=1e46a48c6d536e131a1d0bcf9ba7c3de414387a6;hb=6c86c70b005e3f3efd375868b27f3cff84febfad;hp=ed35806424bbb2c0bca9ae9796fc8a3521eae9a7;hpb=eb918fc784eacd2094e3986ba321ef47690d9983;p=helm.git diff --git a/matita/matita/contribs/lambda_delta/ground_2/star.ma b/matita/matita/contribs/lambda_delta/ground_2/star.ma index ed3580642..1e46a48c6 100644 --- a/matita/matita/contribs/lambda_delta/ground_2/star.ma +++ b/matita/matita/contribs/lambda_delta/ground_2/star.ma @@ -13,12 +13,19 @@ (**************************************************************************) include "basics/star.ma". -include "Ground_2/xoa_props.ma". -include "Ground_2/notation.ma". +include "ground_2/xoa_props.ma". +include "ground_2/notation.ma". (* PROPERTIES OF RELATIONS **************************************************) -definition Decidable: Prop → Prop ≝ λR. R ∨ (R → False). +definition Decidable: Prop → Prop ≝ λR. R ∨ (R → ⊥). + +definition Confluent: ∀A. ∀R: relation A. Prop ≝ λA,R. + ∀a0,a1. R a0 a1 → ∀a2. R a0 a2 → + ∃∃a. R a1 a & R a2 a. + +definition Transitive: ∀A. ∀R: relation A. Prop ≝ λA,R. + ∀a1,a0. R a1 a0 → ∀a2. R a0 a2 → R a1 a2. definition confluent2: ∀A. ∀R1,R2: relation A. Prop ≝ λA,R1,R2. ∀a0,a1. R1 a0 a1 → ∀a2. R2 a0 a2 → @@ -28,6 +35,10 @@ definition transitive2: ∀A. ∀R1,R2: relation A. Prop ≝ λA,R1,R2. ∀a1,a0. R1 a1 a0 → ∀a2. R2 a0 a2 → ∃∃a. R2 a1 a & R1 a a2. +definition bi_confluent: ∀A,B. ∀R: bi_relation A B. Prop ≝ λA,B,R. + ∀a0,a1,b0,b1. R a0 b0 a1 b1 → ∀a2,b2. R a0 b0 a2 b2 → + ∃∃a,b. R a1 b1 a b & R a2 b2 a b. + lemma TC_strip1: ∀A,R1,R2. confluent2 A R1 R2 → ∀a0,a1. TC … R1 a0 a1 → ∀a2. R2 a0 a2 → ∃∃a. R2 a1 a & TC … R1 a2 a. @@ -99,10 +110,10 @@ lemma TC_transitive2: ∀A,R1,R2. qed. definition NF: ∀A. relation A → relation A → predicate A ≝ - λA,R,S,a1. ∀a2. R a1 a2 → S a1 a2. + λA,R,S,a1. ∀a2. R a1 a2 → S a2 a1. inductive SN (A) (R,S:relation A): predicate A ≝ -| SN_intro: ∀a1. (∀a2. R a1 a2 → (S a1 a2 → False) → SN A R S a2) → SN A R S a1 +| SN_intro: ∀a1. (∀a2. R a1 a2 → (S a2 a1 → ⊥) → SN A R S a2) → SN A R S a1 . lemma NF_to_SN: ∀A,R,S,a. NF A R S a → SN A R S a. @@ -110,3 +121,38 @@ lemma NF_to_SN: ∀A,R,S,a. NF A R S a → SN A R S a. @SN_intro #a2 #HRa12 #HSa12 elim (HSa12 ?) -HSa12 /2 width=1/ qed. + +definition NF_sn: ∀A. relation A → relation A → predicate A ≝ + λA,R,S,a2. ∀a1. R a1 a2 → S a2 a1. + +inductive SN_sn (A) (R,S:relation A): predicate A ≝ +| SN_sn_intro: ∀a2. (∀a1. R a1 a2 → (S a2 a1 → ⊥) → SN_sn A R S a1) → SN_sn A R S a2 +. + +lemma NF_to_SN_sn: ∀A,R,S,a. NF_sn A R S a → SN_sn A R S a. +#A #R #S #a2 #Ha2 +@SN_sn_intro #a1 #HRa12 #HSa12 +elim (HSa12 ?) -HSa12 /2 width=1/ +qed. + +lemma bi_TC_strip: ∀A,B,R. bi_confluent A B R → + ∀a0,a1,b0,b1. R a0 b0 a1 b1 → ∀a2,b2. bi_TC … R a0 b0 a2 b2 → + ∃∃a,b. bi_TC … R a1 b1 a b & R a2 b2 a b. +#A #B #R #HR #a0 #a1 #b0 #b1 #H01 #a2 #b2 #H elim H -a2 -b2 +[ #a2 #b2 #H02 + elim (HR … H01 … H02) -HR -a0 -b0 /3 width=4/ +| #a2 #b2 #a3 #b3 #_ #H23 * #a #b #H1 #H2 + elim (HR … H23 … H2) -HR -a0 -b0 -a2 -b2 /3 width=4/ +] +qed. + +lemma bi_TC_confluent: ∀A,B,R. bi_confluent A B R → + bi_confluent A B (bi_TC … R). +#A #B #R #HR #a0 #a1 #b0 #b1 #H elim H -a1 -b1 +[ #a1 #b1 #H01 #a2 #b2 #H02 + elim (bi_TC_strip … HR … H01 … H02) -a0 -b0 /3 width=4/ +| #a1 #b1 #a3 #b3 #_ #H13 #IH #a2 #b2 #H02 + elim (IH … H02) -a0 -b0 #a0 #b0 #H10 #H20 + elim (bi_TC_strip … HR … H13 … H10) -a1 -b1 /3 width=7/ +] +qed.